scholarly journals Symptomatic and preventive effects of the novel phosphodiesterase-9 inhibitor BI 409306 in an immune-mediated model of neurodevelopmental disorders

Author(s):  
Joseph Scarborough ◽  
Daniele Mattei ◽  
Cornelia Dorner-Ciossek ◽  
Michael Sand ◽  
Roberto Arban ◽  
...  

AbstractBI 409306, a phosphodiesterase-9 inhibitor under development for treatment of schizophrenia and attenuated psychosis syndrome (APS), promotes synaptic plasticity and cognition. Here, we explored the effects of BI 409306 treatment in the polyriboinosinic-polyribocytidilic acid (poly[I:C])-based mouse model of maternal immune activation (MIA), which is relevant to schizophrenia and APS. In Study 1, adult offspring received BI 409306 0.2, 0.5, or 1 mg/kg or vehicle to establish an active dose. In Study 2, adult offspring received BI 409306 1 mg/kg and/or risperidone 0.025 mg/kg, risperidone 0.05 mg/kg, or vehicle, to evaluate BI 409306 as add-on to standard therapy for schizophrenia. In Study 3, offspring received BI 409306 1 mg/kg during adolescence only, or continually into adulthood to evaluate preventive effects of BI 409306. We found that BI 409306 significantly mitigated MIA-induced social interaction deficits and amphetamine-induced hyperlocomotion, but not prepulse inhibition impairments, in a dose-dependent manner (Study 1). Furthermore, BI 409306 1 mg/kg alone or in combination with risperidone 0.025 mg/kg significantly reversed social interaction deficits and attenuated amphetamine-induced hyperlocomotion in MIA offspring (Study 2). Finally, we revealed that BI 409306 1 mg/kg treatment restricted to adolescence prevented adult deficits in social interaction, whereas continued treatment into adulthood also significantly reduced amphetamine-induced hyperlocomotion (Study 3). Taken together, our findings suggest that symptomatic treatment with BI 409306 can restore social interaction deficits and dopaminergic dysfunctions in a MIA model of neurodevelopmental disruption, lending preclinical support to current clinical trials of BI 409306 in patients with schizophrenia. Moreover, BI 409306 given during adolescence has preventive effects on adult social interaction deficits in this model, supporting its use in people with APS.

2015 ◽  
Vol 36 (2) ◽  
pp. 555-568 ◽  
Author(s):  
Jiaoqian Ying ◽  
Yuan Zhang ◽  
Shan Gong ◽  
Zhigang Chang ◽  
Xiaofeng Zhou ◽  
...  

Background/Aims: Nesfatin-1 (NF-1), an anorexic nucleobindin-2 (NUCB2)-derived hypothalamic peptide, acts as a peripheral cardiac modulator and it can induce negative inotropic effects. However, the mechanisms underlying these effects in cardiomyocytes remain unclear. Methods: Using patch clamp, protein kinase assays, and western blot analysis, we studied the effect of NF-1 on L-type Ca2+ currents (ICa,L) and to explore the regulatory mechanisms of this effect in adult ventricular myocytes. Results: NF-1 reversibly decreased ICa,L in a dose-dependent manner. This effect was mediated by melanocortin 4 receptor (MC4-R) and was associated with a hyperpolarizing shift in the voltage-dependence of inactivation. Dialysis of cells with GDP-β-S or anti-Gβ antibody as well as pertussis toxin pretreatment abolished the inhibitory effects of NF-1 on ICa,L. Protein kinase C (PKC) antagonists abolished NF-1-induced responses, whereas inhibition of PKA activity or intracellular application of the fast Ca2+-chelator BAPTA elicited no such effects. Application of NF-1 increased membrane abundance of PKC theta isoform (PKCθ), and PKCθ inhibition abolished the decrease in ICa,L induced by NF-1. Conclusion: These data suggest that NF-1 suppresses L-type Ca2+ channels via the MC4-R that couples sequentially to the βγ subunits of Gi/o-protein and the novel PKCθ isoform in adult ventricular myocytes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Long-Feng Lu ◽  
Can Zhang ◽  
Zhuo-Cong Li ◽  
Xiao-Yu Zhou ◽  
Jing-Yu Jiang ◽  
...  

Fish interferon (IFN) is a crucial cytokine for a host to resist external pathogens, conferring cells with antiviral capacity. Meanwhile, grass carp reovirus (GCRV) is a strong pathogen that causes high mortality in grass carp. Therefore, it is necessary to study the strategy used by GCRV to evade the cellular IFN response. In this study, we found that GCRV 35-kDa protein (VP35) inhibited the host IFN production by degrading mitochondrial antiviral signaling (MAVS) protein through the autophagy pathway. First, the overexpression of VP35 inhibited the IFN activation induced by polyinosinic-polycytidylic acid (poly I:C) and MAVS, and the expression of downstream IFN-stimulated genes (ISGs) was also decreased by using VP35 under the stimulation. Second, VP35 interacted with MAVS; the experiments of truncated mutants of MAVS demonstrated that the caspase recruitment domain (CARD) and proline-rich (PRO) domains of MAVS were not necessary for this binding. Then, MAVS was degraded by using VP35 in a dose-dependent manner, and 3-MA (the autophagy pathway inhibitor) significantly blocked the degradation, meaning that MAVS was degraded by using VP35 in the autophagy pathway. The result of MAVS degradation suggested that the antiviral capacity of MAVS was remarkably depressed when interrupted by VP35. Finally, in the host cells, VP35 reduced ifn transcription and made the cells vulnerable to virus infection. In conclusion, our results reveal that GCRV VP35 impairs the host IFN response by degrading MAVS through the autophagy pathway, supplying evidence of a fish virus immune evasion strategy.


Author(s):  
Raina Jain ◽  
Ashish Jain

Background: To evaluate the anticonvulsant activity of Nimodipine alone and in combination with Phenytoin, in MES induced seizures.Methods: The study was conducted in mice and MES seizure was induced by Techno electroconvulsometer. In first part of study, animals were treated with Nimodipine (20mg/kg i.p. and 40mg/kg i.p.) and Phenytoin (0.5 mg/100g i.p. and 1.0mg/100g i.p.), MES was induced and durations of various phases were noted. Duration of Tonic hind limb extension (THLE) was taken as index for antiepileptic activity. In second part, the animals were treated with combination of sub effective doses of Nimodipine (20mg/kg i.p.) and Phenytoin (0.5mg/100g i.p.), MES was induced and durations of various phases were noted.Results: Nimodipine produced significant antiepileptic activity, in dose dependent manner. Phenytoin produced significant antiepileptic effect in dose of 1.0mg/100g but failed to produce any such effect in dose of 0.5mg/100g, when administered alone. But when sub effective doses.Of Nimodipine and Phenytoin were combined, a synergistic effect was seen.Conclusions: Nimodipine possess significant antiepileptic activity, alone, as well as it potentiates the antiepileptic effect of Phenytoin, suggesting the novel application of already proven safe and efficacious calcium channel blockers.


2021 ◽  
Author(s):  
Peifeng Yu ◽  
Dan Lou ◽  
Lifeng Qi ◽  
Zewei Chen

Aim: To investigate whether brassicasterol has inhibitory effects against adenovirus (AdV). Materials and methods: The antiviral effects of brassicasterol against AdV 3 and 7 were tested in human airway epithelial cells. Brassicasterol cytotoxicity was assessed by WST-1 assay. AdV DNA was quantified by qPCR. Results: Brassicasterol inhibited AdV 3 and 7 infection of airway epithelial cells in a dose-dependent manner. Similarly, brassicasterol also inhibited AdV 3 and 7 production in infected cells. No apparent cytotoxicity of brassicasterol was detected. Further study showed that brassicasterol inhibited AdV DNA replication, but had no impact on viral entry of cells and viral genome import to nucleus. Conclusion: Brassicasterol exerts anti-AdV effects probably through the inhibition of viral DNA replication.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2906-2906
Author(s):  
Helena Mistry ◽  
Grace Hsieh ◽  
Sara Buhrlage ◽  
Min Huang ◽  
Eunmi Park ◽  
...  

Abstract ID1 (inhibitor of DNA-binding-1) is a member of the helix-loop-helix family of transcriptional regulatory proteins. The ID-family of proteins (ID1-ID4) inhibit the DNA binding of transcription factors which regulate cellular differentiation and proliferation. Accordingly, deregulation of ID proteins has been observed in many cancer types including leukemia. High levels of ID1 expression are found in primary acute myeloid leukemia (AML) samples and correlate with poor prognosis. ID1 is also identified as a common downstream target of the oncogenic tyrosine kinases, BCR-ABL, TEL-ABL and FLT3-ITD. In addition, Id1 has been shown to promote a myeloproliferative disease in mice, and knockdown of ID1 expression inhibits leukemic cell growth. Therefore, ID1 is an excellent candidate for targeted therapy in leukemia. However, suitable drugs to target ID1 have not been developed to date. ID1 is normally polyubiquitinated and degraded by the proteasome. Recently, it has been shown that USP1, a ubiquitin specific protease, deubiquitinates ID1 and rescues it from proteasome degradation. Inhibition of USP1 therefore offers a new avenue to target ID1 in cancer. Here, using a Ubiquitin-Rhodamine-based high throughput screen, we identified small molecule inhibitors of USP1 and investigated their therapeutic potential for leukemia. These inhibitors blocked the deubiquitinating enzyme activity of USP1 in vitro in a dose-dependent manner with an IC50 in the nanomolar range, and also targeted the enzyme activity of native USP1. To determine the cellular consequences of USP1 inhibition, we exposed leukemic cells to micromolar concentrations of the inhibitors and evaluated ID1 levels and survival. USP1 inhibitors promoted the degradation of ID1 and, concurrently, inhibited the growth (>90% inhibition in 24 hrs) of chronic myelogenous leukemia (CML) and AML cell lines with induction of apoptosis in a dose dependent manner. The EC50 of the inhibitors for the leukemic cell growth inhibition was approximately 1.07 μM ± 0.08 (95% Confidence Limits). Interestingly, exposure to low doses of USP1 inhibitor for 5 days in culture resulted in erythroid differentiation of K562 leukemic cells. A known USP1 inhibitor, Pimozide, also promoted ID1 degradation and inhibited growth of leukemic cells (>90% inhibition in 48 hrs), though at a higher drug concentrations as compared to the novel USP1 inhibitors. Importantly, the novel USP1 inhibitors promoted ID1 degradation and exhibited cytotoxicity (>90% death in 48 hrs) in primary AML patient-derived leukemic cells. Notably, siRNA-mediated knockdown of USP1 in K562 leukemic cells resulted in growth inhibition, increased apoptosis and cell cycle arrest. Collectively, our results demonstrate that the novel small molecule inhibitors of USP1 promote ID1 degradation and are cytotoxic to leukemic cells. The identification of USP1 inhibitors therefore opens up a new approach for leukemia therapy. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 57 (4) ◽  
pp. 1032-1040
Author(s):  
Gariel G Grant ◽  
Rachel R Estrera ◽  
Narendra Pathak ◽  
C Dennis Hall ◽  
Maia Tsikolia ◽  
...  

Abstract The carboxamide N,N-di-ethyl-meta-toluamide (DEET) is the most effective and widely used insect repellent today. However, drawbacks concerning the efficacy and the safety of the repellent have led to efforts to design new classes of insect repellents. Through quantitative structure–activity relationships, chemists have discovered two chemical groups of novel repellents: the acylpiperidines and the carboxamides, with the acylpiperidines generally more potent in biological assays. Although the exact mechanism of action of DEET and other repellents has not yet been thoroughly elucidated, previous research shows that the activity of insect odorant receptors are inhibited in the presence of repellents. The present electrophysiological study employs two-electrode voltage clamp with Xenopus laevis oocytes expressing AgOR2/AgOrco and AgOR8/AgOrco receptors to assess the effects of the novel repellents on Anopheles gambiae Giles (Insecta: Diptera: Culicidae) mosquito odorant receptors. The novel acylpiperidines and carboxamides reversibly inhibited (12–91%) odorant-evoked currents from both AgOR2/AgOrco and AgOR8/AgOrco receptors in a dose-dependent manner at all tested concentrations (30 μM to 1 mM). Furthermore, all the novel agents were more potent inhibitors of the receptors than DEET, with the acylpiperidines producing on average greater inhibition than the carboxamides. Interestingly, there was a correlation (r2 = 0.72) between the percentage inhibition of AgOR2/AgOrco receptor currents and protection times of the acylpiperidines. Our results add to existing evidence that the repellency of a compound is linked to its ability to disrupt the insect olfactory system and that the acylpiperidines could represent a class of more effective alternatives to the current gold standard, DEET.


2019 ◽  
Vol 45 (Supplement_2) ◽  
pp. S262-S262
Author(s):  
Juliet Richetto ◽  
Joseph Scarborough ◽  
Roberto Arban ◽  
Cornelia Dorner-Ciossek ◽  
Holger Rosenbrock ◽  
...  

2009 ◽  
Vol 53 (5) ◽  
pp. 1850-1857 ◽  
Author(s):  
Armando M. De Palma ◽  
Hendrik Jan Thibaut ◽  
Lonneke van der Linden ◽  
Kjerstin Lanke ◽  
Ward Heggermont ◽  
...  

ABSTRACT A novel compound, TTP-8307, was identified as a potent inhibitor of the replication of several rhino- and enteroviruses. TTP-8307 inhibits viral RNA synthesis in a dose-dependent manner, without affecting polyprotein synthesis and/or processing. Drug-resistant variants of coxsackievirus B3 were all shown to carry at least one amino acid mutation in the nonstructural protein 3A. In particular, three mutations located in a nonstructured region preceding the hydrophobic domain (V45A, I54F, and H57Y) appeared to contribute to the drug-resistant phenotype. This region has previously been identified as a hot sport for mutations that resulted in resistance to enviroxime, the sole 3A-targeting enterovirus inhibitor reported thus far. This was corroborated by the fact that TTP-8307 and enviroxime proved cross-resistant. It is hypothesized that TTP-8307 and enviroxime disrupt proper interactions of 3A(B) with other viral or cellular proteins that are required for efficient replication.


Author(s):  
Jain Raina ◽  
Jain Ashish

Objective: To evaluate the anticonvulsant activity of Nimodipine alone and in combination with Phenytoin, in MES induced seizures.Methods: The study was conducted in mice and MES seizure was induced by Techno electro-convulsometer. In the first part of the study, animals were treated with Nimodipine (20 mg/kg i. p. and 40 mg/kg i. p.) and Phenytoin (0.5 mg/100g i. p. and 1.0 mg/100g i. p.), MES was induced and durations of various phases were noted. Duration of Tonic hindlimb extension (THLE) was taken as an index for antiepileptic activity. In the second part, the animals were treated with a combination of sub effective doses of Nimodipine (20 mg/kg i. p.) and Phenytoin (0.5 mg/100g i. p.), MES was induced and durations of various phases were noted.Results: Nimodipine produced significant antiepileptic activity, in a dose-dependent manner. Phenytoin produced a significant antiepileptic effect in dose of 1.0 mg/100g, but failed to produce any such effect in a dose of 0.5 mg/100g, when administered alone. But when sub-effective doses. Of Nimodipine and Phenytoin were combined, a synergistic effect was seen.Conclusion: Nimodipine posses significant antiepileptic activity, alone, as well as it potentiates the antiepileptic effect of Phenytoin, suggesting the novel application of already proven safe and efficacious calcium channel blockers.


Sign in / Sign up

Export Citation Format

Share Document