scholarly journals Complete loss of miR-200 family induces EMT associated cellular senescence in gastric cancer

Oncogene ◽  
2021 ◽  
Author(s):  
Liang Yu ◽  
Can Cao ◽  
Xu Li ◽  
Mili Zhang ◽  
Qisheng Gu ◽  
...  

AbstractThe EMT (epithelial-to-mesenchymal-transition) subtype of gastric cancer (GC) is associated with poor treatment responses and unfavorable clinical outcomes. Despite the broad physiological roles of the micro-RNA (miR)-200 family, they largely serve to maintain the overall epithelial phenotype. However, during late-stage gastric tumorigenesis, members of the miR-200 family are markedly suppressed, resulting in the transition to the mesenchymal state and the acquisition of invasive properties. As such, the miR-200 family represents a robust molecular marker of EMT, and subsequently, disease severity and prognosis. Most reports have studied the effect of single miR-200 family member knockdown. Here, we employ a multiplex CRISPR/Cas9 system to generate a complete miR-200 family knockout (FKO) to investigate their collective and summative role in regulating key cellular processes during GC pathogenesis. Genetic deletion of all miR-200s in the human GC cell lines induced potent morphological alterations, G1/S cell cycle arrest, increased senescence-associated β-galactosidase (SA-β−Gal) activity, and aberrant metabolism, collectively resembling the senescent phenotype. Coupling RNA-seq data with publicly available datasets, we revealed a clear separation of senescent and non-senescent states amongst FKO cells and control cells, respectively. Further analysis identified key senescence-associated secretory phenotype (SASP) components in FKO cells and a positive feedback loop for maintenance of the senescent state controlled by activation of TGF-β and TNF-α pathways. Finally, we showed that miR-200 FKO associated senescence in cancer epithelial cells significantly recruited stromal cells in the tumor microenvironment. Our work has identified a new role of miR-200 family members which function as an integrated unit serving to link senescence with EMT, two major conserved biological processes.

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1239
Author(s):  
Leila Jahangiri ◽  
Tala Ishola ◽  
Perla Pucci ◽  
Ricky M. Trigg ◽  
Joao Pereira ◽  
...  

Cancer stem cells (CSCs) possess properties such as self-renewal, resistance to apoptotic cues, quiescence, and DNA-damage repair capacity. Moreover, CSCs strongly influence the tumour microenvironment (TME) and may account for cancer progression, recurrence, and relapse. CSCs represent a distinct subpopulation in tumours and the detection, characterisation, and understanding of the regulatory landscape and cellular processes that govern their maintenance may pave the way to improving prognosis, selective targeted therapy, and therapy outcomes. In this review, we have discussed the characteristics of CSCs identified in various cancer types and the role of autophagy and long noncoding RNAs (lncRNAs) in maintaining the homeostasis of CSCs. Further, we have discussed methods to detect CSCs and strategies for treatment and relapse, taking into account the requirement to inhibit CSC growth and survival within the complex backdrop of cellular processes, microenvironmental interactions, and regulatory networks associated with cancer. Finally, we critique the computationally reinforced triangle of factors inclusive of CSC properties, the process of autophagy, and lncRNA and their associated networks with respect to hypoxia, epithelial-to-mesenchymal transition (EMT), and signalling pathways.


2020 ◽  
Vol 5 (1) ◽  
pp. 11-14
Author(s):  
Seyed Mohammad Azizi ◽  
Mehrdad Hashemi ◽  
Sarvenaz Falsafi ◽  
Seyedeh Mina Azizi ◽  
Reza Shirkoohi

Aim and Background: Gastric cancer is the fourth most common cancer in the world and the second leading cause of cancer-related deaths. The metastatic invasive cells of tumor tissue are the main cause of mortality. Numerous biological phenomena are involved in organizing the metastatic process. The Epithelial to Mesenchymal Transition is one of the major mechanisms modulating malignant phenotypes by gastric epithelial cells. Specific cell signals are responsible for epithelial or mesenchymal maintenance of the cells in the tissue. These signals are evaluated by measuring the expression of epithelial and mesenchymal biomarkers in that tissue. Villin is an actin-binding protein mainly expressed in the brush border of epithelium which preserves the shape of the cell and its adhesion to the tissue. The aim of the present research is to study the expression of Villin in the cells as a feasible epithelial biomarker in order to evaluate the cross-sectional situation of the cells. Materials and Methods: 38 patients with gastric cancer that were admitted to the Cancer Institute of Imam Khomeini in a period of 6 months were chosen randomly. two samples were collected from each individual; one from the tumoral tissue and one from normal margin of the tumorous tissue. These samples were evaluated after obtaining informed consent from the patients. RNA was extracted from the samples and used as template for cDNA synthesis. The Villin expression was then measured through Real-Time PCR and statistical data according to tissue type and different grades were collected. Results: The expression of Villin in tumor tissue of the patients with gastric cancer was significantly lower than the normal tissue. Conclusion: As it appears decreased expression of Villin can act as an effective factor toward loss of epithelial nature of the cell and occurring Epithelial to Mesenchymal Transition followed by metastasis.


Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5081
Author(s):  
Yuta Adachi ◽  
Ryo Kimura ◽  
Kentaro Hirade ◽  
Hiromichi Ebi

Activating mutations in KRAS are present in 25% of human cancers. When mutated, the KRAS protein becomes constitutively active, stimulating various effector pathways and leading to the deregulation of key cellular processes, including the suppression of apoptosis and enhancement of proliferation. Furthermore, mutant KRAS also promotes metabolic deregulation and alterations in the tumor microenvironment. However, some KRAS mutant cancer cells become independent of KRAS for their survival by activating diverse bypass networks that maintain essential survival signaling originally governed by mutant KRAS. The proposed inducers of KRAS independency are the activation of YAP1 and/or RSK-mTOR pathways and co-mutations in SKT11 (LKB1), KEAP1, and NFE2L2 (NRF2) genes. Metabolic reprogramming, such as increased glutaminolysis, is also associated with KRAS autonomy. The presence or absence of KRAS dependency is related to the heterogeneity of KRAS mutant cancers. Epithelial-to-mesenchymal transition (EMT) in tumor cells is also a characteristic phenotype of KRAS independency. Translationally, this loss of dependence is a cause of primary and acquired resistance to mutant KRAS-specific inhibitors. While KRAS-dependent tumors can be treated with mutant KRAS inhibitor monotherapy, for KRAS-independent tumors, we need an improved understanding of activated bypass signaling pathways towards leveraging vulnerabilities, and advancing therapeutic options for this patient subset.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1863
Author(s):  
Mauricio P. Pinto ◽  
Miguel Córdova-Delgado ◽  
Ignacio N. Retamal ◽  
Matías Muñoz-Medel ◽  
M. Loreto Bravo ◽  
...  

Gastric cancer (GC) is a complex and heterogeneous disease. In recent decades, The Cancer Genome Atlas (TCGA) and the Asian Cancer Research Group (ACRG) defined GC molecular subtypes. Unfortunately, these systems require high-cost and complex techniques and consequently their impact in the clinic has remained limited. Additionally, most of these studies are based on European, Asian, or North American GC cohorts. Herein, we report a molecular classification of Chilean GC patients into five subtypes, based on immunohistochemical (IHC) and in situ hybridization (ISH) methods. These were Epstein–Barr virus positive (EBV+), mismatch repair-deficient (MMR-D), epithelial to mesenchymal transition (EMT)-like, and accumulated (p53+) or undetected p53 (p53−). Given its lower costs this system has the potential for clinical applicability. Our results confirm relevant molecular alterations previously reported by TCGA and ACRG. We confirm EBV+ and MMR-D patients had the best prognosis and could be candidates for immunotherapy. Conversely, EMT-like displayed the poorest prognosis; our data suggest FGFR2 or KRAS could serve as potential actionable targets for these patients. Finally, we propose a low-cost step-by-step stratification system for GC patients. To the best of our knowledge, this is the first Latin American report on a molecular classification for GC. Pending further validation, this stratification system could be implemented into the routine clinic


2020 ◽  
Vol 40 (4) ◽  
pp. 1843-1853 ◽  
Author(s):  
FUMINORI SONOHARA ◽  
SUGURU YAMADA ◽  
SHIGEOMI TAKEDA ◽  
MASAMICHI HAYASHI ◽  
MASAYA SUENAGA ◽  
...  

2017 ◽  
Vol 23 (13) ◽  
pp. 3461-3473 ◽  
Author(s):  
Jiaqiang Dong ◽  
Rui Wang ◽  
Gui Ren ◽  
Xiaowei Li ◽  
Jingbo Wang ◽  
...  

2014 ◽  
Vol 109 (7) ◽  
pp. 684-689 ◽  
Author(s):  
Toshifumi Murai ◽  
Suguru Yamada ◽  
Bryan C. Fuchs ◽  
Tsutomu Fujii ◽  
Goro Nakayama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document