scholarly journals Assessment of catabolic state in infants with the use of urinary titin N-fragment

Author(s):  
Sachiyo Fukushima ◽  
Nobuto Nakanishi ◽  
Kazumichi Fujioka ◽  
Kenichi Suga ◽  
Taku Shirakawa ◽  
...  
Keyword(s):  
2004 ◽  
Vol 17 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Thomas C. Vary ◽  
Christopher J. Lynch

Sepsis initiates a unique series of modifications in the homeostasis of N metabolism and profoundly alters the integration of inter-organ cooperatively in the overall N and energy economy of the host. The net effect of these alterations is an overall N catabolic state, which seriously compromises recovery and is semi-refractory to treatment with current therapies. These alterations lead to a functional redistribution of N (amino acids and proteins) and substrate metabolism among injured tissues and major body organs. The redistribution of amino acids and proteins results in a quantitative reordering of the usual pathways of C and N flow within and among regions of the body with a resultant depletion of the required substrates and cofactors in important organs. The metabolic response to sepsis is a highly integrated, complex series of reactions. To understand the regulation of the response to sepsis, a comprehensive, integrated analysis of the fundamental physiological relationships of key metabolic pathways and mechanisms in sepsis is essential. The catabolism of skeletal muscles, which is manifested by an increase in protein degradation and a decrease in synthesis, persists despite state-of-the-art nutritional care. Much effort has focused on the modulation of the overall amount of nutrients given to septic patients in a hope to improve efficiencies in utilisation and N economies, rather than the support of specific end-organ targets. The present review examines current understanding of the processes affected by sepsis and testable means to circumvent the sepsis-induced defects in protein synthesis in skeletal muscle through increasing provision of amino acids (leucine, glutamine, or arginine) that in turn act as nutrient signals to regulate a number of cellular processes.


2000 ◽  
Vol 23 (2) ◽  
pp. 104-110 ◽  
Author(s):  
J.K. Unger ◽  
G. Catapano ◽  
N.A. Horn ◽  
A. Schroers ◽  
J.C. Gerlach ◽  
...  

Culture media are frequently used in the evaluation of metabolical functions of hepatocytes in hybrid liver support systems (hLSS). However, media compositions differ substantially from those of plasma. Therefore, our study was designed to investigate whether current in vitro studies with medium are suitable to assess the metabolical competence of hLSS-cultures during clinical application as well as to explore whether the cell nutrition with medium provides a suitable modus operandi for stand by cultivation. Paired bioreactor cultures were perfused with either Williams’ Medium E (MPB) or human plasma (PPB). About 6x108 primary pig hepatocytes (>97% viability) were cultured in three laboratory scale bioreactors designed according to Gerlach's bioreactor-concept. Different perfusion protocols were initiated after a standardised period allowing for cell attachment and reorganisation in aggregates. Whereas patterns of enzyme release were similar in both protocols the metabolical behaviour was different between MPB (anabolic state) and PPB (catabolic state). Furthermore, compared to MPB the lidocaine-MEGX-tests for PPB demonstrated lower MEGX-concentrations and a different reaction pattern. We conclude that the nutrition of hepatocytes with medium during the stand by period itself might influence the cell function and subsequently the efficacy of the hLSS-treatment during clinical application. (Int J Artif Organs 2000; 23: 104–10)


2008 ◽  
Vol 199 (1) ◽  
pp. 81-94 ◽  
Author(s):  
Matthew E Picha ◽  
Marc J Turano ◽  
Christian K Tipsmark ◽  
Russell J Borski

Compensatory growth (CG) is a period of growth acceleration that exceeds normal rates after animals are alleviated of certain growth-stunting conditions. In hybrid striped bass (HSB, Morone chrysops×Morone saxatilis), 3 weeks of complete feed restriction results in a catabolic state that, when relieved, renders a subsequent phase of CG. The catabolic state was characterized by depressed levels of hepatic Type I and II GH receptor (ghr1, ghr2) and igf1 mRNA, along with considerable decreases in plasma Igf1. The state of catabolism also resulted in significant declines in hepatic igf2 mRNA and in circulating 40 kDa Igf-binding protein (Igfbp). Skeletal muscle expression of ghr2 mRNA was significantly increased. Upon realimentation, specific growth rates (SGRs) were significantly higher than sized-matched controls, indicating a period of CG. Hepatic ghr1, ghr2, igf1 and igf2 mRNA levels along with plasma Igf1 and 40 kDa Igfbp increased rapidly during realimentation. Plasma Igf1 and total hepatic igf2 mRNA were significantly correlated to SGR throughout the study. Skeletal muscle igf1 mRNA also increased tenfold during CG. These data suggest that endocrine and paracrine/autocrine components of the GH–Igf axis, namely igf1, igf2, and ghr1 and ghr2, may be involved in CG responses in HSB, with several of the gene expression variables exceeding normal levels during CG. We also demonstrate that normalization of hepatic mRNA as a function of total liver production, rather than as a fraction of total RNA, may be a more biologically appropriate method of quantifying hepatic gene expression when using real-time PCR.


Author(s):  
Andrew P. Hall ◽  
Melanie J. Davies

Diabetes mellitus is a common condition in the general population, and particularly so among hospital inpatients. Complications associated with diabetes mellitus further increase its incidence in surgical patients, particularly those requiring vascular, renal, or ophthalmic procedures. Patients with diabetes have a higher rate of morbidity and mortality associated with surgery. This includes cardiovascular and renal complications, infection, and impaired wound healing. The process of surgery, a controlled form of trauma, provokes a metabolic response due to the release of cytokines and stress-associated hormones. These agents promote a catabolic state that includes increased insulin resistance. The resulting hyperglycaemia leads to overflow of substrates in the mitochondria and the generation of excess free oxygen radicals, which can be toxic to the cell. It should, therefore, be possible to reduce these effects by avoiding or attenuating the stress response and/or counteracting its metabolic effects. The stress response is proportional to the degree of tissue trauma. Insulin administration and normoglycaemia have been shown to reverse catabolic changes and improve wound healing and skin grafting, and also to reduce the incidence of infective complications. Additionally, the stress response may be, in part, attenuated by the choice of anaesthetic technique. Neuraxial (spinal and epidural local anaesthetic) analgesia can reduce sympathetic nervous system tone and adrenal output. Additionally, much ophthalmic surgery is now performed with local anaesthesia techniques. Such approaches avoid the more prolonged starvation and cardiorespiratory risks associated with general anaesthesia.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 496
Author(s):  
Mikaela Jardstedt ◽  
Elisabet Nadeau ◽  
Mette Olaf Nielsen ◽  
Peder Nørgaard ◽  
Anna Hessle

Resource efficient winter-feeding of mature pregnant beef cows requires knowledge of how different roughage-based feeding strategies affect cow intake and energy status. Four diets based on traditional timothy-meadow fescue silage (TM), festulolium silage plus urea (FE), reed canarygrass silage (RC) or barley straw supplemented with urea and rapeseed meal (BR), were fed ad libitum for 16 weeks prepartum to 36 Hereford cows. Postpartum, cows were fed the same diet before release on pasture. Individual data on cow intake, changes in body weight (BW), body condition score (BCS) and plasma metabolites, calf birth and weaning weights were recorded. The TM and FE diets resulted in increased BW and BCS prepartum (p < 0.001), while the RC and BR diets resulted in a catabolic state, as indicated by a loss of BCS, lower insulin levels and higher non-esterified fatty acid levels in cows fed BR (p < 0.001). There were no dietary effects on calf parameters (p > 0.29). Feeding RC or BR prepartum might be a possible alternative to traditional timothy-meadow fescue silage if cows are allowed to regain lost BCS during the grazing period. The influence on cow reproductive- and calf performance should be considered before making this management change.


1999 ◽  
Vol 276 (3) ◽  
pp. E558-E564 ◽  
Author(s):  
Regine Minet-Quinard ◽  
Christophe Moinard ◽  
Françoise Villie ◽  
Stephane Walrand ◽  
Marie-Paule Vasson ◽  
...  

Aged rats are more sensitive to injury, possibly through an impairment of nitrogen and glutamine (Gln) metabolisms mediated by glucocorticoids. We studied the metabolic kinetic response of adult and old rats during glucocorticoid treatment. The male Sprague-Dawley rats were 24 or 3 mo old. Both adult and old rats were divided into 7 groups. Groups labeled G3, G5, and G7 received, by intraperitoneal injection, 1.50 mg/kg of dexamethasone (Dex) for 3, 5, and 7 days, respectively. Groups labeled G3PF, G5PF, and G7PF were pair fed to the G3, G5, or G7 groups and were injected with an isovolumic solution of NaCl. One control group comprised healthy rats fed ad libitum. The response to aggression induced specifically by Dex (i.e., allowing for variations in pair-fed controls) appeared later in the aged rats (decrease in nitrogen balance from day 1 in adults but only from day 4 in old rats). The adult rats rapidly adapted to Dex treatment, whereas the catabolic state worsened until the end of treatment in the old rats. Gln homeostasis was not maintained in the aged rats; despite an early increase in muscular Gln synthetase activity, the Gln pool was depleted. These results suggest a kinetic impairment of both nitrogen and muscle Gln metabolisms in response to Dex with aging.


1991 ◽  
Vol 130 (3) ◽  
pp. 469-NP ◽  
Author(s):  
S. C. Davies ◽  
J. A. H. Wass ◽  
R. J. M. Ross ◽  
A. M. Cotterill ◽  
C. R. Buchanan ◽  
...  

ABSTRACT The insulin-like growth factors (IGF-I and IGF-II) are almost completely bound in the circulation to specific binding proteins (IGFBPs). These IGFBPs appear to play a pivotal role in maintaining circulating levels and modulating the delivery of the IGFs to the tissues. A large proportion of the circulating IGFs are bound with high affinity to one of the binding proteins, IGFBP-3. The mechanism by which these IGFs are transferred from the circulatory pool to the tissue receptors is at present unclear. Recent studies in late pregnancy have demonstrated the presence of specific proteases which may modify the IGFBPs such that their affinities for the IGFs are reduced. In this paper, we have demonstrated the presence of a heat-sensitive cation-dependent proteolytic enzyme specific for IGFBP-3 in the serum of five severely ill patients. The activity of this protease was found to vary in these patients, becoming more apparent during fasting than when studied after commencement of parenteral nutrition, indicating that one of the influencing factors in the activity of this protease is the nutritional intake of the patient. Age- and sex-matched healthy adults were also studied in a similar protocol, but no proteolytic modification of any of the IGFBPs was found in any of the samples examined. As the levels of both IGF-I and IGF-II were found to be low in the patients, the presence of a circulatory protease suggests that this may be an adaptive response to increase the bioavailability of the IGFs and possibly to improve the nitrogen retention and counter the catabolic state in severe illness. Journal of Endocrinology (1991) 130,469–473


Sign in / Sign up

Export Citation Format

Share Document