scholarly journals Prostaglandin E1 attenuates high glucose-induced apoptosis in proximal renal tubular cells by inhibiting the JNK/Bim pathway

2019 ◽  
Vol 41 (4) ◽  
pp. 561-571 ◽  
Author(s):  
Yu-han Zhang ◽  
Ya-qin Zhang ◽  
Cong-cong Guo ◽  
Li-kang Wang ◽  
Yu-jiao Cui ◽  
...  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Min Xiao ◽  
Shoujun Bai ◽  
Jing Chen ◽  
Yaxi Li ◽  
Shu Zhang ◽  
...  

Abstract Background Diabetic nephropathy (DN) is the most common causes of end-stage renal disease. Long non-coding RNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) is connected with the development of DN, but the role of CDKN2B-AS1 in DN has not been entirely elucidated. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was carried out to measure CDKN2B-AS1 and miR-98-5p levels. Cell viability, proliferation, and apoptosis were analyzed with 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) or flow cytometry assays. Protein levels were measured by western blotting. The relationship between CDKN2B-AS1 or notch homolog 2 (NOTCH2) and miR-98-5p was verified via dual-luciferase reporter assay. Results CDKN2B-AS1 and NOTCH2 were upregulated in the serum of DN patients and high glucose-disposed human podocytes (HPCs) and human renal tubular cells (HK-2), whereas miR-98-5p was downregulated. High glucose repressed viability and accelerated apoptosis of HPCs and HK-2 cells. CDKN2B-AS1 knockdown impaired high glucose-induced apoptosis and fibrosis of HPCs and HK-2 cells. Mechanistically, CDKN2B-AS1 sponged miR-98-5p to regulate NOTCH2 expression. Also, CDKN2B-AS1 inhibition-mediated effects on apoptosis and fibrosis of high glucose-disposed HPCs and HK-2 cells were weakened by miR-98-5p inhibitor. Also, NOTCH2 knockdown partly reversed miR-98-5p inhibitor-mediated impacts on apoptosis and fibrosis of high glucose-disposed HPCs and HK-2 cells. Conclusion High glucose-induced CDKN2B-AS1 promoted apoptosis and fibrosis via the TGF-β1 signaling mediated by the miR-98-5p/NOTCH2 axis in HPCs and HK-2 cells.


2020 ◽  
Vol 27 (3) ◽  
pp. 301-304
Author(s):  
Bin Yang ◽  
Lihui Chen ◽  
Xin Li ◽  
Zhuwei Guo ◽  
Shi Liu ◽  
...  

2019 ◽  
Vol 132 (19) ◽  
pp. jcs238832
Author(s):  
Barbara Torsello ◽  
Cristina Bianchi ◽  
Chiara Meregalli ◽  
Vitalba Di Stefano ◽  
Lara Invernizzi ◽  
...  

2015 ◽  
Vol 34 (11) ◽  
pp. 1096-1105
Author(s):  
H-H Cheng ◽  
C-T Chou ◽  
T-K Sun ◽  
W-Z Liang ◽  
J-S Cheng ◽  
...  

Naproxen is an anti-inflammatory drug that affects cellular calcium ion (Ca2+) homeostasis and viability in different cells. This study explored the effect of naproxen on [Ca2+]i and viability in Madin-Darby canine kidney cells (MDCK) canine renal tubular cells. At concentrations between 50 μM and 300 μM, naproxen induced [Ca2+]i rises in a concentration-dependent manner. This Ca2+ signal was reduced partly when extracellular Ca2+ was removed. The Ca2+ signal was inhibited by a Ca2+ channel blocker nifedipine but not by store-operated Ca2+ channel inhibitors (econazole and SKF96365), a protein kinase C (PKC) activator phorbol 12-myristate 13-acetate, and a PKC inhibitor GF109203X. In Ca2+-free medium, pretreatment with 2,5-di-tert-butylhydroquinone or thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ pumps, partly inhibited naproxen-induced Ca2+ signal. Inhibition of phospholipase C with U73122 did not alter naproxen-evoked [Ca2+]i rises. At concentrations between 15 μM and 30 μM, naproxen killed cells in a concentration-dependent manner, which was not reversed by prechelating cytosolic Ca2+ with the acetoxymethyl ester of 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid acetoxymethyl. Annexin V/propidium iodide staining data suggest that naproxen induced apoptosis. Together, in MDCK renal tubular cells, naproxen induced [Ca2+]i rises by inducing Ca2+ release from multiple stores that included the endoplasmic reticulum and Ca2+ entry via nifedipine-sensitive Ca2+ channels. Naproxen induced cell death that involved apoptosis.


2006 ◽  
Vol 529 (1-3) ◽  
pp. 8-15 ◽  
Author(s):  
Cheng-Hsien Chen ◽  
Heng Lin ◽  
Yung-Ho Hsu ◽  
Yuh-Mou Sue ◽  
Tzu-Hurng Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document