scholarly journals Zonisamide, an antiepileptic drug, alleviates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress

Author(s):  
Jia-hui Tian ◽  
Qian Wu ◽  
Yong-xiang He ◽  
Qi-ying Shen ◽  
Mubarak Rekep ◽  
...  
2017 ◽  
Vol 41 (6) ◽  
pp. 2503-2512 ◽  
Author(s):  
Yang Zhou ◽  
Wei Wu

Background/Aims: This study aimed to determine whether or not the sodium-glucose co-transporter 2 inhibitor, empagliflozin (EMPA), can protect against diabetic cardiomyopathy (DCM) and to elucidate the related mechanism. Methods: Rats were divided into the following four groups: a non-diabetic group; diabetic cardiomyopathy rats without EMPA treatment; and diabetic cardiomyopathy rats with EMPA treatment (low- and high-dose EMPA). Hemodynamic measurements were performed to evaluate left ventricular systolic and diastolic function. The histopathology of the heart was examined with hematoxylin-eosin staining. Expression of glucose-regulated protein (GRP)78, enhancer-binding protein homologous protein (CHOP), and caspase-12 was detected by Western blot, and the mRNA levels of XBP1, ATF4, and TRAF2 were analysed by real-time PCR. Results: EMPA significantly decreased the blood glucose level when compared with vehicle. EMPA strongly improved cardiac function based on hemodynamic and histopathologic analyses. Moreover, EMPA can significantly down-regulate the expression of GRP78, CHOP, and caspase-12 (P < 0.01). Additionally, the mRNA levels of XBP1, ATF4, and TRAF2 were markedly decreased by administration of EMPA (P < 0.01). Conclusion: EMPA protects against DCM by inactivating the endoplasmic reticulum stress pathway.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 2182-PUB
Author(s):  
YAN XIONG ◽  
YULIAN HE ◽  
WEI-JIN FANG ◽  
YANPING LEI ◽  
YUAN LIN ◽  
...  

2014 ◽  
Vol 306 (11) ◽  
pp. E1239-E1247 ◽  
Author(s):  
Yonggang Wang ◽  
Shanshan Zhou ◽  
Wanqing Sun ◽  
Kristen McClung ◽  
Yong Pan ◽  
...  

The development of diabetic cardiomyopathy is attributed to diabetic oxidative stress, which may be related to the mitogen-activated protein kinase (MAPK) c-Jun NH2-terminal kinase (JNK) activation. The present study tested a hypothesis whether the curcumin analog C66 [(2 E,6 E)-2,6-bis(2-(trifluoromethyl)benzylidene) cyclohexanone] as a potent antioxidant can protect diabetes-induced cardiac functional and pathogenic changes via inhibition of JNK function. Diabetes was induced with a single intraperitoneal injection of streptozotocin in male C57BL/6 mice. Diabetic and age-matched control mice were randomly divided into three groups, each group treated with C66, JNK inhibitor (JNKi, SP600125 ), or vehicle (1% CMC-Na solution) by gavage at 5 mg/kg every other day for 3 mo. Neither C66 nor JNKi impacted diabetic hyperglycemia and inhibition of body-weight gain, but both significantly prevented diabetes-induced JNK phosphorylation in the heart. Compared with basal line, cardiac function was significantly decreased in diabetic mice at 3 mo of diabetes but not in C66- or JNKi-treated diabetic mice. Cardiac fibrosis, oxidative damage, endoplasmic reticulum stress, and cell apoptosis, examined by Sirius red staining, Western blot, and thiobarbituric acid assay, were also significantly increased in diabetic mice, all which were prevented by C66 or JNKi treatment under diabetic conditions. Cardiac metallothionein expression was significantly decreased in diabetic mice but was almost normal in C66- or JNKi-treated diabetic mice. These results suggest that, like JNKi, C66 is able to prevent diabetic upregulation of JNK function, resulting in a prevention of diabetes-induced cardiac fibrosis, oxidative stress, endoplasmic reticulum stress, and cell death, along with a preservation of cardiac metallothionein expression.


Sign in / Sign up

Export Citation Format

Share Document