scholarly journals Immunomodulatory activity of IR700-labelled affibody targeting HER2

2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Justyna Mączyńska ◽  
Chiara Da Pieve ◽  
Thomas A. Burley ◽  
Florian Raes ◽  
Anant Shah ◽  
...  

Abstract There is an urgent need to develop therapeutic approaches that can increase the response rate to immuno-oncology agents. Photoimmunotherapy has recently been shown to generate anti-tumour immunological responses by releasing tumour-associated antigens from ablated tumour cell residues, thereby enhancing antigenicity and adjuvanticity. Here, we investigate the feasibility of a novel HER2-targeted affibody-based conjugate (ZHER2:2395-IR700) selectively to induce cancer cell death in vitro and in vivo. The studies in vitro confirmed the specificity of ZHER2:2395-IR700 binding to HER2-positive cells and its ability to produce reactive oxygen species upon light irradiation. A conjugate concentration- and light irradiation-dependent decrease in cell viability was also demonstrated. Furthermore, light-activated ZHER2:2395-IR700 triggered all hallmarks of immunogenic cell death, as defined by the translocation of calreticulin to the cell surface, and the secretion of ATP, HSP70/90 and HMGB1 from dying cancer cells into the medium. Irradiating a co-culture of immature dendritic cells (DCs) and cancer cells exposed to light-activated ZHER2:2395-IR700 enhanced DC maturation, as indicated by augmented expression of CD86 and HLA-DR. In SKOV-3 xenografts, the ZHER2:2395-IR700-based phototherapy delayed tumour growth and increased median overall survival. Collectively, our results strongly suggest that ZHER2:2395-IR700 is a promising new therapeutic conjugate that has great potential to be applicable for photoimmunotherapy-based regimens.

2012 ◽  
Vol 109 (38) ◽  
pp. 15115-15120 ◽  
Author(s):  
Drew J. Adams ◽  
Mingji Dai ◽  
Giovanni Pellegrino ◽  
Bridget K. Wagner ◽  
Andrew M. Stern ◽  
...  

Piperlongumine is a naturally occurring small molecule recently identified to be toxic selectively to cancer cells in vitro and in vivo. This compound was found to elevate cellular levels of reactive oxygen species (ROS) selectively in cancer cell lines. The synthesis of 80 piperlongumine analogs has revealed structural modifications that retain, enhance, and ablate key piperlongumine-associated effects on cells, including elevation of ROS, cancer cell death, and selectivity for cancer cells over nontransformed cell types. Structure/activity relationships suggest that the electrophilicity of the C2-C3 olefin is critical for the observed effects on cells. Furthermore, we show that analogs lacking a reactive C7-C8 olefin can elevate ROS to levels observed with piperlongumine but show markedly reduced cell death, suggesting that ROS-independent mechanisms, including cellular cross-linking events, may also contribute to piperlongumine’s induction of apoptosis. In particular, we have identified irreversible protein glutathionylation as a process associated with cellular toxicity. We propose a mechanism of action for piperlongumine that may be relevant to other small molecules having two sites of reactivity, one with greater and the other with lesser electrophilicity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lea Miebach ◽  
Eric Freund ◽  
Stefan Horn ◽  
Felix Niessner ◽  
Sanjeev Kumar Sagwal ◽  
...  

AbstractRecent research indicated the potential of cold physical plasma in cancer therapy. The plethora of plasma-derived reactive oxygen and nitrogen species (ROS/RNS) mediate diverse antitumor effects after eliciting oxidative stress in cancer cells. We aimed at exploiting this principle using a newly designed dual-jet neon plasma source (Vjet) to treat colorectal cancer cells. A treatment time-dependent ROS/RNS generation induced oxidation, growth retardation, and cell death within 3D tumor spheroids were found. In TUM-CAM, a semi in vivo model, the Vjet markedly reduced vascularized tumors' growth, but an increase of tumor cell immunogenicity or uptake by dendritic cells was not observed. By comparison, the argon-driven single jet kINPen, known to mediate anticancer effects in vitro, in vivo, and in patients, generated less ROS/RNS and terminal cell death in spheroids. In the TUM-CAM model, however, the kINPen was equivalently effective and induced a stronger expression of immunogenic cancer cell death (ICD) markers, leading to increased phagocytosis of kINPen but not Vjet plasma-treated tumor cells by dendritic cells. Moreover, the Vjet was characterized according to the requirements of the DIN-SPEC 91315. Our results highlight the plasma device-specific action on cancer cells for evaluating optimal discharges for plasma cancer treatment.


2013 ◽  
Vol 144 (5) ◽  
pp. S-166-S-167
Author(s):  
Karen Boland ◽  
Caoimhin Concannon ◽  
Niamh McCawley ◽  
Elaine W. Kay ◽  
Deborah McNamara ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Yan Yan ◽  
Xiao Cheng ◽  
Lin Li ◽  
Rumeng Zhang ◽  
Yong Zhu ◽  
...  

Breast cancer is the most common malignant cancer in women worldwide, especially in developing countries. Herceptin is a monoclonal antibody with an antitumor effect in HER2-positive breast cancer. However, the large molecular weight of Herceptin limited its employment. In this study, we constructed and screened HER2-nanobody and verified its tumor-suppressive effect in HER2-positive breast cancer cells. HER2-nanobody was established, filtrated, purified, and was demonstrated to inhibit cell total number, viability, colony formation and mitosis, and promote cell apoptosis in HER2-positive breast cancer cells in vitro. Treated with HER2-nanobody, tumor growth was significantly inhibited by both intratumor injection and tail intravenous injection in vivo. The phosphorylation of ERK and AKT was restrained by HER2-nanobody in HER2-positive breast cancer cells. RAS-RAF-MAPK and PI3K-AKT-mTOR are two important pathways involved in HER2. It was credible for HER2-nanobody to play the tumor suppressive role by inhibiting the phosphorylation of ERK and AKT. Therefore, HER2-nanobody could be employed as a small molecular antibody to suppress HER2-positive breast cancer.


2021 ◽  
Author(s):  
Aya Shanti ◽  
Kenana Al Adem ◽  
Cesare Stefanini ◽  
Sungmun Lee

Abstract Phosphate ions are the most abundant anions inside the cells, and they are increasingly gaining attention as key modulators of cellular function and gene expression. However, little is known about the effect of inorganic phosphate ions on cancer cells, particularly breast cancer cells. Here, we investigated the toxicity of different phosphate compounds to triple-negative human breast cancer cells (MDA-MB-231) and compared it to that of human monocytes (THP-1). We found that, unlike dihydrogen phosphate (H2PO4−), hydrogen phosphate (HPO42−) at 20 mM or lower concentrations induced breast cancer (MDA-MB-231) cell death more than immune (THP-1) cell death. We correlate this effect to the fact that phosphate in the form of HPO42− raises pH levels to alkaline levels which are not optimum for transport of phosphate into cancer cells. The results in this study highlight the importance of further exploring hydrogen phosphate (HPO42−) as a potential therapeutic for the treatment of breast cancer.


Cancers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 354 ◽  
Author(s):  
Mouna Sdiri ◽  
Xiangmin Li ◽  
William Du ◽  
Safia El-Bok ◽  
Yi-Zhen Xie ◽  
...  

The extensive applications of Cynomorium species and their rich bioactive secondary metabolites have inspired many pharmacological investigations. Previous research has been conducted to examine the biological activities and numerous interesting pharmaceutical activities have been reported. However, the antitumor activities of these species are unclear. To understand the potential anticancer activity, we screened Cynomorium coccineum and Cynomorium songaricum using three different extracts of each species. In this study, the selected extracts were evaluated for their ability to decrease survival rates of five different cancer cell lines. We compared the cytotoxicity of the three different extracts to the anticancer drug vinblastine and one of the most well-known medicinal mushrooms Amaurederma rude. We found that the water and alcohol extracts of C. coccineum at the very low concentrations possessed very high capacity in decreasing the cancer cells viability with a potential inhibition of tumorigenesis. Based on these primitive data, we subsequently tested the ethanol and the water extracts of C. coccineum, respectively in in vitro and in vivo assays. Cell cycle progression and induction of programmed cell death were investigated at both biological and molecular levels to understand the mechanism of the antitumor inhibitory action of the C. coccineum. The in vitro experiments showed that the treated cancer cells formed fewer and smaller colonies than the untreated cells. Cell cycle progression was inhibited, and the ethanol extract of C. coccineum at a low concentration induced accumulation of cells in the G1 phase. We also found that the C. coccineum’s extracts suppressed viability of two murine cancer cell lines. In the in vivo experiments, we injected mice with murine cancer cell line B16, followed by peritoneal injection of the water extract. The treatment prolonged mouse survival significantly. The tumors grew at a slower rate than the control. Down-regulation of c-myc expression appeared to be associated with these effects. Further investigation showed that treatment with C. coccineum induced the overexpression of the tumor suppressor Foxo3 and other molecules involved in inducing autophagy. These results showed that the C. coccineum extract exerts its antiproliferative activity through the induction of cell death pathway. Thus, the Cynomorium plants appear to be a promising source of new antineoplastic compounds.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Xiaotian Sun ◽  
James M. Angelastro ◽  
David Merino ◽  
Qing Zhou ◽  
Markus D. Siegelin ◽  
...  

Abstract Survivin (BIRC5, product of the BIRC5 gene) is highly expressed in many tumor types and has been widely identified as a potential target for cancer therapy. However, effective anti-survivin drugs remain to be developed. Here we report that both vector-delivered and cell-penetrating dominant-negative (dn) forms of the transcription factor ATF5 that promote selective death of cancer cells in vitro and in vivo cause survivin depletion in tumor cell lines of varying origins. dn-ATF5 decreases levels of both survivin mRNA and protein. The depletion of survivin protein appears to be driven at least in part by enhanced proteasomal turnover and depletion of the deubiquitinase USP9X. Survivin loss is rapid and precedes the onset of cell death triggered by dn-ATF5. Although survivin downregulation is sufficient to drive tumor cell death, survivin over-expression does not rescue cancer cells from dn-ATF5-promoted apoptosis. This indicates that dn-ATF5 kills malignant cells by multiple mechanisms that include, but are not limited to, survivin depletion. Cell-penetrating forms of dn-ATF5 are currently being developed for potential therapeutic use and the present findings suggest that they may pose an advantage over treatments that target only survivin.


Sign in / Sign up

Export Citation Format

Share Document