scholarly journals SETD2 mutation in renal clear cell carcinoma suppress autophagy via regulation of ATG12

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Patricia González-Rodríguez ◽  
Pinelopi Engskog-Vlachos ◽  
Hanzhao Zhang ◽  
Adriana-Natalia Murgoci ◽  
Ioannis Zerdes ◽  
...  

AbstractInactivating mutations in the SETD2 gene, encoding for a nonredundant histone H3 methyltransferase and regulator of transcription, is a frequent molecular feature in clear cell renal cell carcinomas (ccRCC). SETD2 deficiency is associated with recurrence of ccRCC and bears low prognostic values. Targeting autophagy, a conserved catabolic process with critical functions in maintenance of cellular homeostasis and cell conservation under stress condition, is emerging as a potential therapeutic strategy to combat ccRCC. Epigenetics-based pathways are now appreciated as key components in the regulation of autophagy. However, whether loss of function in the SETD2 histone modifying enzyme occurring in ccRCC cells may impact on their ability to undergo autophagy remained to be explored. Here, we report that SETD2 deficiency in RCC cells is associated with the aberrant accumulation of both free ATG12 and of an additional ATG12-containing complex, distinct from the ATG5–ATG12 complex. Rescue of SETD2 functions in the SETD2 deficiency in RCC cells, or reduction of SETD2 expression level in RCC cells wild type for this enzyme, demonstrates that SETD2 deficiency in RCC is directly involved in the acquisition of these alterations in the autophagic process. Furthermore, we revealed that deficiency in SETD2, known regulator of alternative splicing, is associated with increased expression of a short ATG12 spliced isoform at the depend of the canonical long ATG12 isoform in RCC cells. The defect in the ATG12-dependent conjugation system was found to be associated with a decrease autophagic flux, in accord with the role for this ubiquitin-like protein conjugation system in autophagosome formation and expansion. Finally, we report that SETD2 and ATG12 gene expression levels are associated with favorable respective unfavorable prognosis in ccRCC patients. Collectively, our findings bring further argument for considering the SETD2 gene status of ccRCC tumors, when therapeutic interventions, such as targeting the autophagic process, are considered to combat these kidney cancers.

Autophagy ◽  
2015 ◽  
Vol 11 (10) ◽  
pp. 1891-1904 ◽  
Author(s):  
Sandy Giuliano ◽  
Yann Cormerais ◽  
Maeva Dufies ◽  
Renaud Grépin ◽  
Pascal Colosetti ◽  
...  

2019 ◽  
Author(s):  
Justyna Okarmus ◽  
Helle Bogetofte ◽  
Sissel Ida Schmidt ◽  
Matias Ryding ◽  
Silvia Garcia Lopez ◽  
...  

AbstractMutations in the PARK2 gene encoding parkin, an E3 ubiquitin ligase, are associated with autosomal recessive early-onset Parkinson’s disease (PD). While parkin has been implicated in the regulation of mitophagy and proteasomal degradation, the precise mechanism leading to neurodegeneration in both sporadic and familial PD upon parkin loss-of-function mutations remains unknown. Cultures of isogenic induced pluripotent stem cell (iPSC) lines with and without PARK2 knockout (KO) enable mechanistic studies of the effect of parkin deficiency in human dopaminergic neurons. In the present study, we used such cells to investigate the impact of PARK2 KO on the lysosomal compartment combining different approaches, such as mass spectrometry-based proteomics, electron microscopy (TEM) analysis and functional assays. We discovered a clear link between parkin deficiency and lysosomal alterations. PARK2 KO neurons exhibited a perturbed lysosomal morphology, displaying significantly enlarged and electron-lucent lysosomes as well as an increased total lysosomal content, which was exacerbated by mitochondrial stress. In addition, we found perturbed autophagic flux and decreased lysosomal enzyme activity suggesting an impairment of the autophagy-lysosomal pathway in parkin-deficient cells. Interestingly, activity of the GBA-encoded enzyme, β-glucocerebrosidase, was significantly increased suggesting the existence of a compensatory mechanism. In conclusion, our data provide a unique characterization of the morphology, content, and function of lysosomes in PARK2 KO neurons, thus revealing a new important connection between mitochondrial dysfunction and lysosomal dysregulation in PD pathogenesis.


Author(s):  
Balawant Kumar ◽  
Rizwan Ahmad ◽  
Giovanna A. Giannico ◽  
Roy Zent ◽  
Geoffrey A. Talmon ◽  
...  

Abstract Background Claudin-2 expression is upregulated in multiple cancers and promotes cancer malignancy. Remarkably, the regulation of claudin-2 expression in kidney cell lines contrasts its reported regulation in other organs. However, claudin-2 role in renal clear cell carcinoma (RCC) remains unknown despite its predominant expression in the proximal tubular epithelium (PTE), the site of RCC origin. Methods Publicly available and independent patient databases were examined for claudin-2 association with RCC. The novel protein function was validated in vitro and in vivo by gain or loss of function assays. Mechanistic results were concluded by Mass spectroscopy, immunoprecipitation and mutational studies, and functional evaluations. Results We show that the significant decrease in claudin-2 expression characterized PTE cells and Ex-vivo cultured mouse kidney subjected to dedifferentiation. Inhibition of claudin-2 was enough to induce mesenchymal plasticity and invasive mobility in these models. Further, a progressive loss of claudin-2 expression associated with the RCC progression and poor patient survival. Overexpression of claudin-2 in RCC-derived cancer cells inhibited tumorigenic abilities and xenograft tumor growth. These data supported a novel tumor-suppressive role of claudin-2 in RCC. Mechanistic insights further revealed that claudin-2 associates with YAP-protein and modulates its phosphorylation (S127) and nuclear expression. The tumor suppressive effects of claudin-2 expression were lost upon deletion of its PDZ-binding motif emphasizing the critical role of the PDZ-domain in claudin-2 interaction with YAP in regulating RCC malignancy. Conclusions Our results demonstrate a novel kidney specific tumor suppressive role for claudin-2 protein and further demonstrate that claudin-2 co-operates with the YAP signaling in regulating the RCC malignancy.


Metabolites ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 588
Author(s):  
Margarita-Elena Papandreou ◽  
Nektarios Tavernarakis

Progressive accumulation of damaged cellular constituents contributes to age-related diseases. Autophagy is the main catabolic process, which recycles cellular material in a multitude of tissues and organs. Autophagy is activated upon nutrient deprivation, and oncogenic, heat or oxidative stress-induced stimuli to selectively degrade cell constituents and compartments. Specificity and accuracy of the autophagic process is maintained via the precision of interaction of autophagy receptors or adaptors and substrates by the intricate, stepwise orchestration of specialized integrating stimuli. Polymorphisms in genes regulating selective autophagy have been linked to aging and age-associated disorders. The involvement of autophagy perturbations in aging and disease indicates that pharmacological agents balancing autophagic flux may be beneficial, in these contexts. Here, we introduce the modes and mechanisms of selective autophagy, and survey recent experimental evidence of dysfunctional autophagy triggering severe pathology. We further highlight identified pharmacological targets that hold potential for developing therapeutic interventions to alleviate cellular autophagic cargo burden and associated pathologies.


2013 ◽  
Vol 13 (2) ◽  
pp. 79-80
Author(s):  
Zane Simtniece ◽  
Gatis Kirsakmens ◽  
Ilze Strumfa ◽  
Andrejs Vanags ◽  
Maris Pavars ◽  
...  

Abstract Here, we report surgical treatment of a patient presenting with pancreatic metastasis (MTS) of renal clear cell carcinoma (RCC) 11 years after nephrectomy. RCC is one of few cancers that metastasise in pancreas. Jaundice, abdominal pain or gastrointestinal bleeding can develop; however, asymptomatic MTS can be discovered by follow-up after removal of the primary tumour. The patient, 67-year-old female was radiologically diagnosed with a clinically silent mass in the pancreatic body and underwent distal pancreatic resection. The postoperative period was smooth. Four months after the surgery, there were no signs of disease progression.


2019 ◽  
Vol 78 (12) ◽  
pp. 1081-1088
Author(s):  
Rati Chkheidze ◽  
Patrick J Cimino ◽  
Kimmo J Hatanpaa ◽  
Charles L White ◽  
Manuel Ferreira ◽  
...  

Abstract Clear cell, microcytic, and angiomatous meningiomas are 3 vasculature-rich variants with overlapping morphological features but different prognostic and treatment implications. Distinction between them is not always straightforward. We compared the expression patterns of the hypoxia marker carbonic anhydrase IX (CA-IX) in meningiomas with predominant clear cell (n = 15), microcystic (n = 9), or angiomatous (n = 11) morphologies, as well as 117 cases of other World Health Organization recognized histological meningioma variants. Immunostaining for SMARCE1 protein, whose loss-of-function has been associated with clear cell meningiomas, was performed on all clear cell meningiomas, and selected variants of meningiomas as controls. All clear cell meningiomas showed absence of CA-IX expression and loss of nuclear SMARCE1 expression. All microcystic and angiomatous meningiomas showed diffuse CA-IX immunoreactivity and retained nuclear SMARCE1 expression. In other meningioma variants, CA-IX was expressed in a hypoxia-restricted pattern and was highly associated with atypical features such as necrosis, small cell change, and focal clear cell change. In conclusion, CA-IX may serve as a useful diagnostic marker in differentiating clear cell, microcystic, and angiomatous meningiomas.


Sign in / Sign up

Export Citation Format

Share Document