scholarly journals Correction: Lung epithelial cell-derived extracellular vesicles activate macrophage-mediated inflammatory responses via ROCK1 pathway

2020 ◽  
Vol 11 (2) ◽  
Author(s):  
H. -G. Moon ◽  
Y. Cao ◽  
J. Yang ◽  
J. H. Lee ◽  
H. S. Choi ◽  
...  
2015 ◽  
Vol 6 (12) ◽  
pp. e2016-e2016 ◽  
Author(s):  
H-G Moon ◽  
Y Cao ◽  
J Yang ◽  
J H Lee ◽  
H S Choi ◽  
...  

Abstract Despite decades of research, the pathogenesis of acute respiratory distress syndrome (ARDS) remains poorly understood, thus impeding the development of effective treatment. Diffuse alveolar damage (DAD) and lung epithelial cell death are prominent features of ARDS. Lung epithelial cells are the first line of defense after inhaled stimuli, such as in the case of hyperoxia. We hypothesized that lung epithelial cells release ‘messenger’ or signaling molecules to adjacent or distant macrophages, thereby initiating or propagating inflammatory responses after noxious insult. We found that, after hyperoxia, a large amount of extracellular vesicles (EVs) were generated and released into bronchoalveolar lavage fluid (BALF). These hyperoxia-induced EVs were mainly derived from live lung epithelial cells as the result of hyperoxia-associated endoplasmic reticulum (ER) stress. These EVs were remarkably different from epithelial ‘apoptotic bodies’, as reflected by the significantly smaller size and differentially expressed protein markers. These EVs fall mainly in the size range of the exosomes and smaller microvesicles (MVs) (50–120 nm). The commonly featured protein markers of apoptotic bodies were not found in these EVs. Treating alveolar macrophages with hyperoxia-induced, epithelial cell-derived EVs led to an increased secretion of pro-inflammatory cytokines and macrophage inflammatory protein 2 (MIP-2). Robustly increased macrophage and neutrophil influx was found in the lung tissue of the mice intranasally treated with hyperoxia-induced EVs. It was determined that EV-encapsulated caspase-3 was largely responsible for the alveolar macrophage activation via the ROCK1 pathway. Caspase-3-deficient EVs induced less cytokine/MIP-2 release, reduced cell counts in BALF, less neutrophil infiltration and less inflammation in lung parenchyma, both in vitro and in vivo. Furthermore, the serum circulating EVs were increased and mainly derived from lung epithelial cells after hyperoxia exposure. These circulating EVs also activated systemic macrophages other than the alveolar ones. Collectively, the results show that hyperoxia-induced, lung epithelial cell-derived and caspase-3 enriched EVs activate macrophages and mediate the inflammatory lung responses involved in lung injury.


1992 ◽  
Vol 267 (21) ◽  
pp. 14703-14712
Author(s):  
B.R. Stripp ◽  
P.L. Sawaya ◽  
D.S. Luse ◽  
K.A. Wikenheiser ◽  
S.E. Wert ◽  
...  

EBioMedicine ◽  
2021 ◽  
Vol 70 ◽  
pp. 103500
Author(s):  
Huarong Chen ◽  
Weixin Liu ◽  
Yifei Wang ◽  
Dabin Liu ◽  
Liuyang Zhao ◽  
...  

1994 ◽  
Vol 267 (5) ◽  
pp. L489-L497 ◽  
Author(s):  
S. W. Glasser ◽  
T. R. Korfhagen ◽  
S. E. Wert ◽  
J. A. Whitsett

This review summarizes progress in the application of transgenic mouse technology to the study of lung development and disease. Since advances in molecular genetics have greatly facilitated the isolation of cDNA and genes, our ability to readily assess roles of both normal and mutated genes in transgenic mouse in vivo represents a major advance, bridging molecular biology and whole animal physiology. Strategies have been developed in which lung epithelial cell promoter elements are used to drive normal or mutated genes into specific subsets of respiratory epithelial cells in the lungs of developing and mature transgenic mice. These mice have been used to elucidate the cis-acting elements controlling lung epithelial cell gene expression, to discern the role of specific polypeptides in lung morphogenesis and tumorigenesis, and to create animal models of pulmonary disease. The ability to mutate genes at their precise chromosomal locations through gene targeting in embryonic stem cells has lead to the production of animal models of lung diseases such as cystic fibrosis. Both gene insertion and gene targeting create permanent mouse lines that pass the modified gene to their progeny, providing animals for the study of the pathogenesis and treatment of pulmonary disorders.


Sign in / Sign up

Export Citation Format

Share Document