scholarly journals Role of GALNT4 in protecting against cardiac hypertrophy through ASK1 signaling pathway

2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Bin-Bin Zhang ◽  
Lu Gao ◽  
Qin Yang ◽  
Yuan Liu ◽  
Xiao-Yue Yu ◽  
...  

AbstractPathological myocardial hypertrophy is regulated by multiple pathways. However, its underlying pathogenesis has not been fully explored. The goal of this work was to elucidate the function of polypeptide N-acetylgalactosaminyltransferase 4 (GALNT4) in myocardial hypertrophy and its underlying mechanism of action. We illustrated that GALNT4 was upregulated in the models of hypertrophy. Two cardiac hypertrophy models were established through partial transection of the aorta in GALNT4-knockout (GALNT4-KO) mice and adeno-associated virus 9-GALNT4 (AAV9-GALNT4) mice. The GALNT4-KO mice demonstrated accelerated cardiac hypertrophy, dysfunction, and fibrosis, whereas the opposite phenotype was observed in AAV9-GALNT4 mice. Similarly, GALNT4 overexpression mitigated the degree of phenylephrine-induced cardiomyocyte hypertrophy in vitro whereas GALNT4 knockdown aggravated the hypertrophy. In terms of mechanism, GALNT4 deficiency increased the phosphorylation and activation of ASK1 and its downstream targets (JNK and p38), whereas GALNT4 overexpression inhibited activation of the ASK1 pathway. Furthermore, we demonstrated that GALNT4 can directly bind to ASK1 inhibiting its N-terminally mediated dimerization and the subsequent phosphorylation of ASK1. Finally, an ASK1 inhibitor (iASK1) was able to reverse the effects of GALNT4 in vitro. In summary, GALNT4 may serve as a new regulatory factor and therapeutic target by blocking the activation of the ASK1 signaling cascade.

2021 ◽  
Author(s):  
Byung-Hyun Cha ◽  
Minjin Jung ◽  
Angela S. Kim ◽  
Victoria C. Lepak ◽  
Brett A. Colson ◽  
...  

Abstract Cardiac hypertrophy is one of the most common genetic heart disorders and considered a risk factor for cardiac morbidity and mortality. The mammalian target of rapamycin (mTOR) pathway plays a key regulatory function in cardiovascular physiology and pathology in hypertrophy. AZD2014 is a small-molecule ATP competitive mTOR inhibitor working on both mTORC1 and mTORC2 complexes. Little is known about the therapeutic effects of AZD2014 in cardiac hypertrophy and its underlying mechanism. Here, AZD2014 is examined in in vitro model of phenylephrine (PE)-induced human cardiomyocyte hypertrophy and a myosin-binding protein-C (Mybpc3)-targeted knockout (KO) mouse model of cardiac hypertrophy. Our results demonstrate that cardiomyocytes treated with AZD2014 retain the normal phenotype and AZD2014 attenuates cardiac hypertrophy in the Mybpc3-KO mouse model through inhibition of dual mTORC1 and mTORC2, which in turn results in the down-regulation of the Akt/mTOR signaling pathway.


2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Bing Zhang ◽  
Yanzhen Tan ◽  
Zhengbin Zhang ◽  
Pan Feng ◽  
Wenyuan Ding ◽  
...  

Mitochondrial unfolding protein response (UPRmt) effectively resists the pathological cardiac hypertrophy and improves the mitochondrial function. However, the specific activation mechanism and drugs that can effectively activate UPRmt in the cardiac muscle are yet to be elucidated. The aim of this study was to determine the regulation role of UPRmt on preventing pathological cardiac hypertrophy by tetrahydrocurcumin (THC) and explore its underlying molecular mechanism. Male C57BL/6J wild-type (WT) mice were divided into a control group and subjected to sham treatment for 4 weeks, and a test group which was subjected to transverse aortic constriction (TAC) surgery. Animals in the control and test group were orally administered THC (50 mg/kg) for 4 weeks after TAC procedure; an equivalent amount of saline was orally administered in the control sham-treated group and the TAC group. Subsequently, oxidative stress and UPRmt markers were assessed in these mice, and cardiac hypertrophy, fibrosis, and cardiac function were tested. Small interfering RNA (siRNA) targeting proliferator-activated receptor-gamma coactivator (PGC)-1α and activating transcription factor 5 (ATF5) were used to determine the UPRmt activation mechanism. THC supplement partly upregulated UPRmt effectors and inhibited TAC-induced oxidative stress compared with TAC-operated WT mice, thereby substantially attenuating contractile dysfunction, cardiac hypertrophy, and fibrosis. Furthermore, PGC-1α knockdown blunted the UPRmt activation and the cardioprotective role of THC. The interaction between PGC-1α and ATF5 was tested in neonatal rat cardiac myocytes under normal conditions. The results showed that PGC-1α was an upstream effector of ATF5 and partly activated UPRmt. In vitro, phenylephrine- (PE-) induced cardiomyocyte hypertrophy caused ATF5 upregulating rather than downregulating corresponding to the downregulation of PGC-1α. The PGC-1α/ATF5 axis mediated the UPRmt activation and stress-resistance role of THC in vitro. Collectively, the present study provides the first evidence that PGC-1 and ATF5 can form a signaling axis to partly activate UPRmt that mediates the cardioprotective role of THC in pathological cardiac hypertrophy.


2021 ◽  
Vol 116 (1) ◽  
Author(s):  
Anca Remes ◽  
Andreas H. Wagner ◽  
Nesrin Schmiedel ◽  
Markus Heckmann ◽  
Theresa Ruf ◽  
...  

AbstractPrevious studies have underlined the substantial role of nuclear factor of activated T cells (NFAT) in hypertension-induced myocardial hypertrophy ultimately leading to heart failure. Here, we aimed at neutralizing four members of the NFAT family of transcription factors as a therapeutic strategy for myocardial hypertrophy transiting to heart failure through AAV-mediated cardiac expression of a RNA-based decoy oligonucleotide (dON) targeting NFATc1-c4. AAV-mediated dON expression markedly decreased endothelin-1 induced cardiomyocyte hypertrophy in vitro and resulted in efficient expression of these dONs in the heart of adult mice as evidenced by fluorescent in situ hybridization. Cardiomyocyte-specific dON expression both before and after induction of transverse aortic constriction protected mice from development of cardiac hypertrophy, cardiac remodeling, and heart failure. Singular systemic administration of AAVs enabling a cell-specific expression of dONs for selective neutralization of a given transcription factor may thus represent a novel and powerful therapeutic approach.


Author(s):  
Gabriel Komla Adzika ◽  
Hongjian Hou ◽  
Adebayo Oluwafemi Adekunle ◽  
Ruqayya Rizvi ◽  
Seyram Yao Adzraku ◽  
...  

Chronic catecholamine stress (CCS) induces the occurrence of cardiomyopathy—pathological cardiac hypertrophy (PCH), which is characterized by left ventricular systolic dysfunction (LVSD). Recently, mounting evidence has implicated myocardial inflammation in the exacerbation of pathological cardiac remodeling. However, there are currently no well-defined treatment interventions or regimes targeted at both the attenuation of maladaptive myocardial hypertrophy and inflammation during CCS to prevent PCH. G protein-coupled receptor kinase 5 (GRK5) and adenylyl cyclases (ACs)-cAMP mediates both cardiac and inflammatory responses. Also, GRK5 and ACs are implicated in stress-induced LVSD. Herein, we aimed at preventing PCH during CCS via modulating adaptive cardiac and inflammatory responses by inhibiting GRK5 and/or stimulating ACs. Isoproterenol-induced cardiomyopathy (ICM) was modeled using 0.5 mg/100 g/day isoproterenol injections for 40 days. Alterations in cardiac and inflammatory responses were assessed from the myocardia. Similarities in the immunogenicity of cardiac troponin I (cTnI) and lipopolysaccharide under CCS were assessed, and Amlexanox (35 μM/ml) and/or Forskolin (10 μM/ml) were then employed in vitro to modulate adaptive inflammatory responses by inhibiting GRK5 or activating ACs-cAMP, respectively. Subsequently, Amlexanox (2.5 mg/100 g/day) and/or Forskolin (0.5 mg/100 g/day) were then translated into in vivo during CCS to modulate adaptive cardiac and inflammatory responses. The effects of Amlexanox and Forskolin on regulating myocardial systolic functions and inflammatory responses during CCS were ascertained afterward. PCH mice had excessive myocardial hypertrophy, fibrosis, and aggravated LVSD, which were accompanied by massive CD68+ inflammatory cell infiltrations. In vitro, Forskolin-AC/cAMP was effective than Amlexanox-GRK5 at downregulating proinflammatory responses during stress; nonetheless, Amlexanox and Forskolin combination demonstrated the most efficacy in modulating adaptive inflammatory responses. Individually, the translated Amlexanox and Forskolin treatment interventions were ineffective at subduing the pathological remodeling and sustaining cardiac function during CCS. However, their combination was potent at preventing LVSD during CCS by attenuating maladaptive myocardial hypertrophy, fibrosis, and inflammatory responses. The treatment intervention attained its potency mainly via Forskolin-ACs/cAMP-mediated modulation of cardiac and inflammatory responses, coupled with Amlexanox inhibition of GRK5 mediated maladaptive cascades. Taken together, our findings highlight the Amlexanox and Forskolin combination as a potential therapeutic intervention for preventing the occurrence of pathological cardiac hypertrophy during chronic stress.


2021 ◽  
Vol 218 (5) ◽  
Author(s):  
Celia Rupérez ◽  
Gemma Ferrer-Curriu ◽  
Aina Cervera-Barea ◽  
Laura Florit ◽  
Mariona Guitart-Mampel ◽  
...  

Meteorin-like/Meteorin-β (Metrnl/Metrnβ) is a secreted protein produced by skeletal muscle and adipose tissue that exerts metabolic actions that improve glucose metabolism. The role of Metrnβ in cardiac disease is completely unknown. Here, we show that Metrnβ-null mice exhibit asymmetrical cardiac hypertrophy, fibrosis, and enhanced signs of cardiac dysfunction in response to isoproterenol-induced cardiac hypertrophy and aging. Conversely, adeno-associated virus–mediated specific overexpression of Metrnβ in the heart prevents the development of cardiac remodeling. Furthermore, Metrnβ inhibits cardiac hypertrophy development in cardiomyocytes in vitro, indicating a direct effect on cardiac cells. Antibody-mediated blockage of Metrnβ in cardiomyocyte cell cultures indicated an autocrine action of Metrnβ on the heart, in addition to an endocrine action. Moreover, Metrnβ is highly produced in the heart, and analysis of circulating Metrnβ concentrations in a large cohort of patients reveals that it is a new biomarker of heart failure with an independent prognostic value.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Byung-Hyun Cha ◽  
Minjin Jung ◽  
Angela S. Kim ◽  
Victoria C. Lepak ◽  
Brett A. Colson ◽  
...  

AbstractCardiac hypertrophy is one of the most common genetic heart disorders and considered a risk factor for cardiac morbidity and mortality. The mammalian target of rapamycin (mTOR) pathway plays a key regulatory function in cardiovascular physiology and pathology in hypertrophy. AZD2014 is a small-molecule ATP competitive mTOR inhibitor working on both mTORC1 and mTORC2 complexes. Little is known about the therapeutic effects of AZD2014 in cardiac hypertrophy and its underlying mechanism. Here, AZD2014 is examined in in vitro model of phenylephrine (PE)-induced human cardiomyocyte hypertrophy and a myosin-binding protein-C (Mybpc3)-targeted knockout (KO) mouse model of cardiac hypertrophy. Our results demonstrate that cardiomyocytes treated with AZD2014 retain the normal phenotype and AZD2014 attenuates cardiac hypertrophy in the Mybpc3-KO mouse model through inhibition of dual mTORC1 and mTORC2, which in turn results in the down-regulation of the Akt/mTOR signaling pathway.


Author(s):  
Wei Wang ◽  
Nian Liu ◽  
Li Xin ◽  
Yanfei Ruan ◽  
Xin Du ◽  
...  

AbstractHeart often undergoes mal-remodeling and hypertrophic growth in response to pathological stress. MiRNAs can regulate the cardiac function and participate in the regulation of cardiac hypertrophy. The present study aims at identifying the role of miR-296-5p in cardiac hypertrophy and further the underlying mechanism in hypertrophic cascades. Mice with cardiac hypertrophy were established by transverse aortic constriction (TAC). Cardiac hypertrophy in cardiomyocytes was induced by angiotensin II. Expression of miR-296-5p and its target gene CACNG6 was examined in cardiomyocytes transfected by miRNA. The expression of miR-296-5p was upregulated in mice with TAC surgery. The inhibition of miR-296-5p attenuated cardiac hypertrophy both in vitro and in vivo. And dual-luciferase reporter assays showed CACNG6 was the direct target of miR-296-5p, which modulated the expression of calcium signaling. MiR-296-5p was found to aggravate cardiac hypertrophy by targeting CACNG6, which suggests inhibition of miR-296-5p might have clinical potential to suppress cardiac hypertrophy and heart failure.


2018 ◽  
Vol 38 (2) ◽  
Author(s):  
Yunlong Bai ◽  
Xi Sun ◽  
Qun Chu ◽  
Anqi Li ◽  
Ying Qin ◽  
...  

Cardiac hypertrophy is a compensatory response to stress or stimuli, which results in arrhythmia and heart failure. Although multiple molecular mechanisms have been identified, cardiac hypertrophy is still difficult to treat. Pyroptosis is a caspase-1-dependent pro-inflammatory programmed cell death. Caspase-1 is involved in various types of diseases, including hepatic injury, cancers, and diabetes-related complications. However, the exact role of caspase-1 in cardiac hypertrophy is yet to be discovered. The present study aimed to explore the possible role of caspase-1 in pathogenesis of cardiac hypertrophy. We established cardiac hypertrophy models both in vivo and in vitro to detect the expression of caspase-1 and interleukin-1β (IL-1β). The results showed that caspase-1 and IL-1β expression levels were significantly up-regulated during cardiac hypertrophy. Subsequently, caspase-1 inhibitor was co-administered with angiotensin II (Ang II) in cardiomyocytes to observe whether it could attenuate cardiac hypertrophy. Results showed that caspase-1 attenuated the pro-hypertrophic effect of Ang II, which was related to the down-regulation of caspase-1 and IL-1β. In conclusion, our results provide a novel evidence that caspase-1 mediated pyroptosis is involved in cardiac hypertrophy, and the inhibition of caspase-1 will offer a therapeutic potential against cardiac hypertrophy.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Shohei Kumagai ◽  
Nao Hayamizu ◽  
Sachi Matsunami ◽  
Wataru Otsuka ◽  
Yasushi Sakata ◽  
...  

Background: L-type calcium channel (LTCC) localizes at T-tubules and caveolae in cardiomyocytes, and plays major roles in excitation-contraction coupling and cardiac hypertrophy. The expression of β2a subunit of LTCC (β2a) is increased in human failing heart. Recently, it was reported that phosphorylation of β2a by CaMKII enhanced LTCC activity. However, the functional role of β2a phosphorylation in heart failure remains to be elucidated. Objective: To make clear the functional role of β2a phosphorylation in cardiomyocytes. Methods and Results: Adenoviral overexpression of β2a demonstrated its constitutive phosphorylation by CaMKII and induced neonatal cardiomyocyte hypertrophy. Interestingly, phosphorylated β2a was co-localized with caveolin3. To assess caveolae-specific activation of CaMKII, we generated a fusion protein composed of phospholamban and caveolin3 (PLN-Cav3). This protein localized at caveolae, and caveolae-specific activation of CaMKII was detected using phospho-specific antibody for PLN (Thr17). In addition, to inhibit caveolae-specific CaMKII activity, we developed a GFP fusion protein with caveolin binding domain fused to CaMKII inhibitory peptide (CBD-GFP-AIP). We identified that this protein co-localized with caveolin3, and inhibited activation of CaMKII specifically at caveolae using PLN-Cav3 method. Moreover, CBD-GFP-AIP abolished β2a phosphorylation and attenuated β2a-induced cardiac hypertrophy. We found that phenylephrine (PE) stimulation activated caveolae-CaMKII and β2a in vitro and in vivo. Finally, we generated transgenic mice overexpressing wild-type (w-TG) or non-phospho mutant β2a (m-TG) in cardiomyocyte and evaluated cardiac hypertrophy after two weeks of chronic PE stimulation. The expression of β2a in both TG increased approximately 2.5 fold compared to control mice. PE-induced cardiac hypertrophy was attenuated in m-DTG compared to w-DTG mice (heart weight-body weight ratio: control; 4.8±0.2, *w-TG; 5.5±0.3, m-TG; 4.8±0.4, n=5-6, *p<0.05 vs others). Conclusion: We developed novel methods to evaluate and inhibit caveolae-specific activation of CaMKII. Using these methods, we revealed that phosphorylated β2a localized at caveolae, and exaggerates cardiac hypertrophy.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 53
Author(s):  
Jung Joo Yoon ◽  
Chan Ok Son ◽  
Hye Yoom Kim ◽  
Byung Hyuk Han ◽  
Yun Jung Lee ◽  
...  

Cardiac hypertrophy is a major risk factor for heart failure and leads to cardiovascular morbidity and mortality. Doxorubicin (DOX) is regarded as one of the most potent anthracycline antibiotic agents; however, its clinical usage has some limitations because it has serious cardiotoxic side effects such as dilated cardiomyopathy and congestive heart failure. Betulinic acid (BA) is a pentacyclic-cyclic lupane-type triterpene that has been reported to have anti-bacterial, anti-inflammatory, anti-vascular neogenesis, and anti-fibrotic effects. However, there is no study about its direct effect on DOX induced cardiac hypertrophy and apoptosis. The present study aims to investigate the effect of BA on DOX-induced cardiomyocyte hypertrophy and apoptosis in vitro in H9c2 cells. The H9c2 cells were stimulated with DOX (1 µM) in the presence or absence of BA (0.1–1 μM) and incubated for 24 h. The results of the present study indicated that DOX induces the increase cell surface area and the upregulation of hypertrophy markers including atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), beta-myosin heavy chain (β-MHC), and Myosin Light Chain-2 (MLC2) in H9c2 cells. However, the pathological hypertrophic responses were downregulated after BA treatment. Moreover, phosphorylation of JNK, ERK, and p38 in DOX treated H9c2 cells was blocked by BA. As a result of measuring the change in ROS generation using DCF-DA, BA significantly inhibited DOX-induced the production of intracellular reactive oxygen species (ROS) when BA was treated at a concentration of over 0.1 µM. DOX-induced activation of GATA-4 and calcineurin/NFAT-3 signaling pathway were remarkably improved by pre-treating of BA to H9c2 cells. In addition, BA treatment significantly reduced DOX-induced cell apoptosis and protein expression levels of Bax and cleaved caspase-3/-9, while the expression of Bcl-2 was increased by BA. Therefore, BA can be a potential treatment for cardiomyocyte hypertrophy and apoptosis that lead to sudden heart failure.


Sign in / Sign up

Export Citation Format

Share Document