scholarly journals Caspase-1 regulates Ang II-induced cardiomyocyte hypertrophy via up-regulation of IL-1β

2018 ◽  
Vol 38 (2) ◽  
Author(s):  
Yunlong Bai ◽  
Xi Sun ◽  
Qun Chu ◽  
Anqi Li ◽  
Ying Qin ◽  
...  

Cardiac hypertrophy is a compensatory response to stress or stimuli, which results in arrhythmia and heart failure. Although multiple molecular mechanisms have been identified, cardiac hypertrophy is still difficult to treat. Pyroptosis is a caspase-1-dependent pro-inflammatory programmed cell death. Caspase-1 is involved in various types of diseases, including hepatic injury, cancers, and diabetes-related complications. However, the exact role of caspase-1 in cardiac hypertrophy is yet to be discovered. The present study aimed to explore the possible role of caspase-1 in pathogenesis of cardiac hypertrophy. We established cardiac hypertrophy models both in vivo and in vitro to detect the expression of caspase-1 and interleukin-1β (IL-1β). The results showed that caspase-1 and IL-1β expression levels were significantly up-regulated during cardiac hypertrophy. Subsequently, caspase-1 inhibitor was co-administered with angiotensin II (Ang II) in cardiomyocytes to observe whether it could attenuate cardiac hypertrophy. Results showed that caspase-1 attenuated the pro-hypertrophic effect of Ang II, which was related to the down-regulation of caspase-1 and IL-1β. In conclusion, our results provide a novel evidence that caspase-1 mediated pyroptosis is involved in cardiac hypertrophy, and the inhibition of caspase-1 will offer a therapeutic potential against cardiac hypertrophy.

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Lin Zhao ◽  
Guangming Cheng ◽  
Yanjuan Yang ◽  
Anweshan Samanta ◽  
Rizwan R Afzal ◽  
...  

Introduction: Interleukin-6 (IL-6), a proinflammatory cytokine, has been implicated in ischemic cardiac pathologies. Very little is currently known regarding the role of IL-6 signaling in pathological cardiomyocyte hypertrophy and LV dysfunction. Hypothesis: We hypothesized that IL-6 signaling plays a central role in cardiomyocyte hypertrophy and exerts a deleterious impact on LV remodeling induced by pressure overload. Methods: In vitro, adult cardiomyocytes from C57BL/6 (WT, control) and IL-6 knockout (KO) mice were stimulated by IL-6 and pro-hypertrophic agent angiotensin II (Ang II). The expression of hypertrophy markers and related signaling molecules were examined by real-time quantitative RT-PCR. In vivo, weight-matched male WT and IL-6 KO mice underwent transverse aortic constriction (TAC) or a sham procedure. Serial echocardiograms and a terminal hemodynamic study were performed. Results: After exposure to IL-6 and hypertrophic agonists, the expression of hypertrophy related genes, BNP, GATA-4, αSK actin, and β-MHC increased significantly in WT cardiomyocytes (Fig). These effects were significantly attenuated in IL-6 knockout cardiomyocytes (Fig), indicating an essential role of IL-6 in cardiomyocyte hypertrophy. In vivo, the worsening in LV contraction as well as relaxation after TAC was significantly attenuated in IL-6 KO mice, indicating superior preservation of LV function in the setting of pressure overload in the absence of IL-6 signaling. Conclusions: The protection against Ang II-induced hypertrophy observed in IL-6 KO adult cardiomyocytes in vitro, and in hearts of IL-6 KO mice after TAC in vivo illustrates a crucial role played by IL-6 in pathogenesis of pressure overload-induced LV hypertrophy. Modulation of IL-6 signaling may have preventive therapeutic potential for countless hypertensive patients at risk for LV hypertrophy and failure.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Lei Wang ◽  
Dongze Qin ◽  
Hongtao Shi ◽  
Yanan Zhang ◽  
Hao Li ◽  
...  

Cardiac hypertrophy mainly predicts heart failure and is highly linked with sudden loss of lives. MicroRNAs (miRNAs) play essential roles in the development of cardiac hypertrophy through binding to corresponding mRNA targets. In this study, in order to investigate the roles of two mature forms of miRNA-195, miR-195-3p, and miR-195-5p, in vitro and in vivo models of cardiac hypertrophy were established by applying angiotensin II (Ang II) to H9c2 cardiomyocytes and infusing chronic Ang II to mice, respectively. We found that miR-195-5p was evidently equally upregulated in the in vitro and in vivo studies of cardiac hypertrophy induced by Ang II. High expressed miR-195-5p could adequately promote hypertrophy, whereas the suppression of miR-195-5p prevented hypertrophy of H9c2 cardiomyocytes under Ang II treatment. Furthermore, the luciferase reporter system demonstrated that MFN2 and FBWX7 were target genes of miR-195-5p, which negatively regulated the expression of these two genes in H9c2 cells. By contrast, in both models, expression of miR-195-3p was only slightly changed without statistical significance. In addition, we observed a trend towards decreased expression of hypertrophic markers by overexpressing miR-195-3p in AngII-treated H9c2 cardiomyocytes in vitro. Taken together, our study indicates that miR-195-5p promotes cardiac hypertrophy via targeting MFN2 and FBXW7 and may provide promising therapeutic strategies for interfering cardiac hypertrophy.


2017 ◽  
Vol 41 (5) ◽  
pp. 2004-2015 ◽  
Author(s):  
Zeng-xiang Dong ◽  
Lin Wan ◽  
Ren-jun Wang ◽  
Yuan-qi Shi ◽  
Guang-zhong Liu ◽  
...  

Background/Aims: Flavonol (–)-epicatechin (EPI) is present in high amounts in cocoa and tea products, and has been shown to exert beneficial effects on the cardiovascular system. However, the precise mechanism of EPI on cardiomyocyte hypertrophy has not yet been determined. In this study, we examined whether EPI could inhibit cardiac hypertrophy. Methods: We utilised cultured neonatal mouse cardiomyocytes and mice for immunofluorescence, immunochemistry, qRT-PCR, and western blot analyses. Results: 1µM EPI significantly inhibited 1µM angiotensin II (Ang II)-induced increase of cardiomyocyte size, as well as the mRNA and protein levels of ANP, BNP and β-MHC in vitro. The effects of EPI were accompanied with an up-regulation of SP1 and SIRT1, and were abolished by SP1 inhibition. Up-regulation of SP1 could block Ang II-induced increase in cardiomyocyte size, as well as the mRNA and protein levels of ANP, BNP and β-MHC, and increase the protein levels of SIRT1 in vitro. Moreover, 1 mg/kg body weight/day EPI significantly inhibited mouse cardiac hypertrophy induced by Ang II, which could be eliminated by SP1 inhibition in vivo. Conclusion: Our data indicated that EPI inhibited AngII-induced cardiac hypertrophy by activating the SP1/SIRT1 signaling pathway.


2021 ◽  
Vol 16 (1) ◽  
pp. 242-251
Author(s):  
Guorong Zhang ◽  
Xinghua Ni

Abstract The aim of this study was to investigate the detailed role and molecular mechanism of long noncoding RNA (lncRNA) taurine upregulated gene 1 (TUG1) in cardiac hypertrophy. Cardiac hypertrophy was established by transverse abdominal aortic constriction (TAC) in vivo or angiotensin II (Ang II) treatment in vitro. Levels of lncRNA TUG1, miR-497 and myocyte enhancer factor 2C (MEF2C) mRNA were assessed by quantitative reverse transcriptase PCR (qRT-PCR). Western blot assay was performed to determine the expression of MEF2C protein. The endogenous interactions among TUG1, miR-497 and MEF2C were confirmed by dual-luciferase reporter and RNA immunoprecipitation assays. Our data indicated that TUG1 was upregulated and miR-497 was downregulated in the TAC rat model and Ang II-induced cardiomyocytes. TUG1 knockdown or miR-497 overexpression alleviated the hypertrophy induced by Ang II in cardiomyocytes. Moreover, TUG1 acted as a sponge of miR-497, and MEF2C was directly targeted and repressed by miR-497. miR-497 overexpression mediated the protective role of TUG1 knockdown in Ang II-induced cardiomyocyte hypertrophy. MEF2C was a functional target of miR-497 in regulating Ang II-induced cardiomyocyte hypertrophy. In addition, TUG1 regulated MEF2C expression through sponging miR-497. Knockdown of TUG1 rescued Ang II-induced hypertrophy in cardiomyocytes at least partly through targeting the miR-497/MEF2C axis, highlighting a novel promising therapeutic target for cardiac hypertrophy treatment.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lu Gao ◽  
Sen Guo ◽  
Rui Long ◽  
Lili Xiao ◽  
Rui Yao ◽  
...  

Lysosomal-associated protein transmembrane 5 (LAPTM5) is mainly expressed in immune cells and has been reported to regulate inflammation, apoptosis and autophagy. Although LAPTM5 is expressed in the heart, whether LAPTM5 plays a role in regulating cardiac function remains unknown. Here, we show that the expression of LAPTM5 is dramatically decreased in murine hypertrophic hearts and isolated hypertrophic cardiomyocytes. In this study, we investigated the role of LAPTM5 in pathological cardiac hypertrophy and its possible mechanism. Our results show that LAPTM5 gene deletion significantly exacerbates cardiac remodeling, which can be demonstrated by reduced myocardial hypertrophy, fibrosis, ventricular dilation and preserved ejection function, whereas the opposite phenotype was observed in LAPTM5 overexpression mice. In line with the in vivo results, knockdown of LAPTM5 exaggerated angiotensin II-induced cardiomyocyte hypertrophy in neonatal rat ventricular myocytes, whereas overexpression of LAPTM5 protected against angiotensin II-induced cardiomyocyte hypertrophy in vitro. Mechanistically, LAPTM5 directly bound to Rac1 and further inhibited MEK-ERK1/2 signaling, which ultimately regulated the development of cardiac hypertrophy. In addition, the antihypertrophic effect of LAPTM5 was largely blocked by constitutively active mutant Rac1 (G12V). In conclusion, our results suggest that LAPTM5 is involved in pathological cardiac hypertrophy and that targeting LAPTM5 has great therapeutic potential in the treatment of pathological cardiac hypertrophy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tiecheng Zhong ◽  
Zonggui Wang ◽  
Sayeman Islam Niloy ◽  
Yue Shen ◽  
Stephen T. O’Rourke ◽  
...  

Cardiac hypertrophy is an adaptive response to cardiac overload initially but turns into a decompensated condition chronically, leading to heart failure and sudden cardiac death. The molecular mechanisms involved in cardiac hypertrophy and the signaling pathways that contribute to the switch from compensation to decompensation are not fully clear. The aim of the current study was to examine the role of PI3-kinases Class I (PI3KC1) and Class III (PI3KC3) in angiotensin (Ang) II-induced cardiac hypertrophy. The results demonstrate that treatment of cardiomyocytes with Ang II caused dose-dependent increases in autophagy, with an increasing phase followed by a decreasing phase. Ang II-induced autophagic increases were potentiated by inhibition of PI3KC1 with LY294002, but were impaired by inhibition of PI3KC3 with 3-methyladenine (3-MA). In addition, blockade of PI3KC1 significantly attenuated Ang II-induced ROS production and cardiomyocyte hypertrophy. In contrast, blockade of PI3KC3 potentiated Ang II-induced ROS production and cardiac hypertrophy. Moreover, blockade of PI3KC1 by overexpression of dominant negative p85 subunit of PI3KC1 significantly attenuated Ang II-induced cardiac hypertrophy in normotensive rats. Taken together, these results demonstrate that both PI3KC1 and PI3KC3 are involved in Ang II-induced cardiac hypertrophy by different mechanisms. Activation of PI3KC1 impairs autophagy activity, leading to accumulation of mitochondrial ROS, and, hence, cardiac hypertrophy. In contrast, activation of PI3KC3 improves autophagy activity, thereby reducing mitochondrial ROS and leads to a protective effect on Ang II-induced cardiac hypertrophy.


2021 ◽  
Vol 21 (6) ◽  
pp. 451-461
Author(s):  
Wei Gu ◽  
Yutong Cheng ◽  
Su Wang ◽  
Tao Sun ◽  
Zhizhong Li

AbstractEpigenetic regulations essentially participate in the development of cardiomyocyte hypertrophy. PHD finger protein 19 (PHF19) is a polycomb protein that controls H3K36me3 and H3K27me3. However, the roles of PHF19 in cardiac hypertrophy remain unknown. Here in this work, we observed that PHF19 promoted cardiac hypertrophy via epigenetically targeting SIRT2. In angiotensin II (Ang II)-induced cardiomyocyte hypertrophy, adenovirus-mediated knockdown of Phf19 reduced the increase in cardiomyocyte size, repressed the expression of hypertrophic marker genes Anp and Bnp, as well as inhibited protein synthesis. By contrast, Phf19 overexpression promoted Ang II-induced cardiomyocyte hypertrophy in vitro. We also knocked down Phf19 expression in mouse hearts in vivo. The results demonstrated that Phf19 knockdown reduced Ang II-induced decline in cardiac fraction shortening and ejection fraction. Phf19 knockdown also inhibited Ang II-mediated increase in heart weight, reduced cardiomyocyte size, and repressed the expression of hypertrophic marker genes in mouse hearts. Further mechanism studies showed that PHF19 suppressed the expression of SIRT2, which contributed to the function of PHF19 during cardiomyocyte hypertrophy. PHF19 bound the promoter of SIRT2 and regulated the balance between H3K27me3 and H3K36me3 to repress the expression of SIRT2 in vitro and in vivo. In human hypertrophic hearts, the overexpression of PHF19 and downregulation of SIRT2 were observed. Of importance, PHF19 expression was positively correlated with hypertrophic marker genes ANP and BNP but negatively correlated with SIRT2 in human hypertrophic hearts. Therefore, our findings demonstrated that PHF19 promoted the development of cardiac hypertrophy via epigenetically regulating SIRT2.


2020 ◽  
Vol 10 (1) ◽  
pp. 78
Author(s):  
April Nettesheim ◽  
Myoung Sup Shim ◽  
Angela Dixon ◽  
Urmimala Raychaudhuri ◽  
Haiyan Gong ◽  
...  

Extracellular matrix (ECM) deposition in the trabecular meshwork (TM) is one of the hallmarks of glaucoma, a group of human diseases and leading cause of permanent blindness. The molecular mechanisms underlying ECM deposition in the glaucomatous TM are not known, but it is presumed to be a consequence of excessive synthesis of ECM components, decreased proteolytic degradation, or both. Targeting ECM deposition might represent a therapeutic approach to restore outflow facility in glaucoma. Previous work conducted in our laboratory identified the lysosomal enzyme cathepsin B (CTSB) to be expressed on the cellular surface and to be secreted into the culture media in trabecular meshwork (TM) cells. Here, we further investigated the role of CTSB on ECM remodeling and outflow physiology in vitro and in CSTBko mice. Our results indicate that CTSB localizes in the caveolae and participates in the pericellular degradation of ECM in TM cells. We also report here a novel role of CTSB in regulating the expression of PAI-1 and TGFβ/Smad signaling in TM cells vitro and in vivo in CTSBko mice. We propose enhancing CTSB activity as a novel therapeutic target to attenuate fibrosis and ECM deposition in the glaucomatous outflow pathway.


2021 ◽  
Vol 22 (15) ◽  
pp. 7844
Author(s):  
Jason S. Holsapple ◽  
Ben Cooper ◽  
Susan H. Berry ◽  
Aleksandra Staniszewska ◽  
Bruce M. Dickson ◽  
...  

Extracorporeal Shock Wave Therapy (ESWT) is used clinically in various disorders including chronic wounds for its pro-angiogenic, proliferative, and anti-inflammatory effects. However, the underlying cellular and molecular mechanisms driving therapeutic effects are not well characterized. Macrophages play a key role in all aspects of healing and their dysfunction results in failure to resolve chronic wounds. We investigated the role of ESWT on macrophage activity in chronic wound punch biopsies from patients with non-healing venous ulcers prior to, and two weeks post-ESWT, and in macrophage cultures treated with clinical shockwave intensities (150–500 impulses, 5 Hz, 0.1 mJ/mm2). Using wound area measurements and histological/immunohistochemical analysis of wound biopsies, we show ESWT enhanced healing of chronic ulcers associated with improved wound angiogenesis (CD31 staining), significantly decreased CD68-positive macrophages per biopsy area and generally increased macrophage activation. Shockwave treatment of macrophages in culture significantly boosted uptake of apoptotic cells, healing-associated cytokine and growth factor gene expressions and modulated macrophage morphology suggestive of macrophage activation, all of which contribute to wound resolution. Macrophage ERK activity was enhanced, suggesting one mechanotransduction pathway driving events. Collectively, these in vitro and in vivo findings reveal shockwaves as important regulators of macrophage functions linked with wound healing. This immunomodulation represents an underappreciated role of clinically applied shockwaves, which could be exploited for other macrophage-mediated disorders.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Francisco J Gonzalez-Gonzalez ◽  
Perike Srikanth ◽  
Andrielle E Capote ◽  
Alsina Katherina M ◽  
Benjamin Levin ◽  
...  

Atrial fibrillation (AF) is the most common sustained arrhythmia, with an estimated prevalence in the U.S.of 6.1 million. AF increases the risk of a thromboembolic stroke in five-fold. Although atrial hypocontractility contributes to stroke risk in AF, the molecular mechanisms reducing myofilament contractile function in AF remains unknown. We have recently identified protein phosphatase 1 subunit 12c (PPP1R12C) as a key molecule targeting myosin light-chain phosphorylation in AF. Objective: We hypothesize that the overexpression of PPP1R12C causes hypophosphorylation of atrial myosin light-chain 2 (MLC2a), thereby decreasing atrial contractility in AF. Methods and Results: Left and right atrial appendage tissues were isolated from AF patients versus sinus rhythm (SR). To evaluate the role of the PP1c-PPP1R12C interaction in MLC2a de-phosphorylation, we utilized Western blots, co-immunoprecipitation, and phosphorylation assays. In patients with AF, PPP1R12C expression was increased 3.5-fold versus SR controls with an 88% reduction in MLC2a phosphorylation. PPP1R12C-PP1c binding and PPP1R12C-MLC2a binding were significantly increased in AF. In vitro studies of either pharmacologic (BDP5290) or genetic (T560A), PPP1R12C activation demonstrated increased PPP1R12C binding with both PP1c and MLC2a, and dephosphorylation of MLC2a. Additionally, to evaluate the role of PPP1R12C expression in cardiac function, mice with lentiviral cardiac-specific overexpression of PPP1R12C (Lenti-12C) were evaluated for atrial contractility using echocardiography, versus wild-type and Lenti-controls. Lenti-12C mice demonstrated a 150% increase in left atrium size versus controls, with reduced atrial strain and atrial ejection fraction. Also, programmed electrical stimulation was performed to evaluate AF inducibility in vivo. Pacing-induced AF in Lenti-12C mice was significantly higher than controls. Conclusion: The overexpression of PPP1R12C increases PP1c targeting to MLC2a and provokes dephosphorylation, associated with a reduction in atrial contractility and an increase in AF inducibility. All these discoveries suggest that PP1 regulation of sarcomere function at MLC2a is a main regulator of atrial contractility in AF.


Sign in / Sign up

Export Citation Format

Share Document