scholarly journals ZBTB38 suppresses prostate cancer cell proliferation and migration via directly promoting DKK1 expression

2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Guanxiong Ding ◽  
Wei Lu ◽  
Qing Zhang ◽  
Kai Li ◽  
Huihui Zhou ◽  
...  

AbstractProstate cancer is still one of the most common malignancies in men all around the world. The mechanism of how prostate cancer initiates and develops is still not clear. Here in this study, we show that tumor suppressor ZBTB38 could suppress the migration and proliferation of prostate cancer cells. We find lower ZBTB38 expression in prostate cancer tissues, which also strongly predicts a poorer prognosis of prostate cancer. ZBTB38 binds DKK1 (Dickkopf WNT signaling pathway inhibitor 1) locus and promotes DKK1 expression in prostate cancer cell lines. Consistently, reduction of DKK1 expression significantly restores ZBTB38-mediated suppression of migration and proliferation of prostate cancer cell lines. Mechanistically, we find that ZBTB38 primarily binds the promoters of target genes, and differentially regulates the expression of 1818 genes. We also identify PRKDC (protein kinase, DNA-activated, catalytic subunit) as a ZBTB38-interacting protein that could repress the function of ZBTB38 in suppressing migration and proliferation of prostate cancer cells. Taken together, our results indicate that ZBTB38 could repress cell migration and proliferation in prostate cancer via promoting DKK1 expression, and also provide evidence supporting ZBTB38 as a potential prognosis marker for prostate cancer.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jianpeng Xue ◽  
Yang Pu ◽  
Jason Smith ◽  
Xin Gao ◽  
Chun Wang ◽  
...  

AbstractMetastasis is the leading cause of mortalities in cancer patients due to the spreading of cancer cells to various organs. Detecting cancer and identifying its metastatic potential at the early stage is important. This may be achieved based on the quantification of the key biomolecular components within tissues and cells using recent optical spectroscopic techniques. The aim of this study was to develop a noninvasive label-free optical biopsy technique to retrieve the characteristic molecular information for detecting different metastatic potentials of prostate cancer cells. Herein we report using native fluorescence (NFL) spectroscopy along with machine learning (ML) to differentiate prostate cancer cells with different metastatic abilities. The ML algorithms including principal component analysis (PCA) and nonnegative matrix factorization (NMF) were used for dimension reduction and feature detection. The characteristic component spectra were used to identify the key biomolecules that are correlated with metastatic potentials. The relative concentrations of the molecular spectral components were retrieved and used to classify the cancer cells with different metastatic potentials. A multi-class classification was performed using support vector machines (SVMs). The NFL spectral data were collected from three prostate cancer cell lines with different levels of metastatic potentials. The key biomolecules in the prostate cancer cells were identified to be tryptophan, reduced nicotinamide adenine dinucleotide (NADH) and hypothetically lactate as well. The cancer cells with different metastatic potentials were classified with high accuracy using the relative concentrations of the key molecular components. The results suggest that the changes in the relative concentrations of these key fluorophores retrieved from NFL spectra may present potential criteria for detecting prostate cancer cells of different metastatic abilities.


2002 ◽  
Vol 172 (3) ◽  
pp. R7-11 ◽  
Author(s):  
PL Jeffery ◽  
AC Herington ◽  
LK Chopin

This study has examined the expression of two new facets of the growth hormone axis, the growth hormone secretagogue receptor (GHS-R) and its recently identified putative natural ligand ghrelin, in prostate cancer cells. GHS-R 1a and 1b isoforms and ghrelin mRNA expression were detected by RT-PCR in the ALVA-41, LNCaP, DU145 and PC3 prostate cancer cell lines. A normal prostate cDNA library expressed GHS-R1a, but not the 1b isoform or ghrelin. Immunohistochemical staining for the GHS-R 1a isoform and ghrelin was positive in the four cell lines studied. PC3 cells showed increased cell proliferation in vitro in response to ghrelin to levels 33% above untreated controls, implying a potential tumour-promoting role for ghrelin in this tissue. This study is the first to demonstrate the co-expression of the GHS-R and ghrelin in prostate cancer cells. It is also the first study to provide evidence that a previously unrecognised autocrine/paracrine pathway involving ghrelin, that is capable of stimulating growth, exists in prostate cancer.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Lukasz Paschke ◽  
Karol Jopek ◽  
Marta Szyszka ◽  
Marianna Tyczewska ◽  
Agnieszka Ziolkowska ◽  
...  

Novel molecular targets are being searched to aid in prostate cancer diagnosis and therapy. Recently, ZFP91 zinc finger protein has been found to be upregulated in prostate cancer cell lines. It is a potentially important oncogenic protein; however only limited data regarding its biological function and expression patterns are available. To date, ZFP91 has been shown to be a key factor in activation of noncanonical NF-κB signaling pathway as well as to be involved in HIF-1α signaling in cancer cells. The present study aimed to characterize ZFP91 expression in prostate cancer specimens. Furthermore, since our earlier reports showed discrepancies between ZFP91 mRNA and protein levels, we studied this interrelationship in LNCaP and PC-3 prostate cancer cell lines using siRNA mediated knockdown. QPCR analysis revealed marked upregulation of ZFP91 mRNA in the majority of prostate cancer specimens. Transfection of prostate cancer cells with ZFP91 siRNA resulted in a 10-fold decrease in mRNA levels. On a protein level, however, no inhibitory effect was observed over the time of the cell culture. We conclude that ZFP91 is overexpressed in prostate cancer and that potential accumulation of the ZFP91 protein in studied cells may be of importance in prostate cancer biology.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Guangchi Xu ◽  
Yin Meng ◽  
Lihe Wang ◽  
Bo Dong ◽  
Feifei Peng ◽  
...  

Abstract Background Prostate cancer is the most common malignant tumor in men. Due to the lack of theoretical research on its pathogenic mechanism, the current cure rate is still low. miRNAs play an important role in the pathogenesis of various cancers. miRNA-214-5p plays an important role in the development of a variety of cancers. This study aims to explore the expression level of miR-214-5p in prostate cancer and make a preliminary study of its molecular mechanism in the development of prostate cancer to provide effective new strategies for the treatment of prostate cancer. Methods The target genes of miRNA-214-5p were predicted with bioinformatics technology, and the target relationship between miRNA-214-5p and its target genes was verified with dual luciferase reporter assay. RT-qPCR and Western blot were used to detect the expression levels of miRNA-214-5p and target genes in 50 clinical samples and two common prostate continuous cell lines, respectively. The targeting relationship between miRNA-214-5p and its target genes was verified with clinical data. miRNA-214-5p and miRNA-214-5p inhibitor was over-expressed in DU-145 cell lines to verify the effect of miRNA-214-5p on prostate cancer cell proliferation and SOX4 gene expression. And the mechanism of miRNA-214-5p inhibiting the proliferation of prostate cancer cells were analyzed by detecting the expression difference of downstream factors of SOX4 pathway. Bioinformatics analysis showed that miRNA-214-5p combined with SOX4 3′UTR region, and dual luciferase reporter assay further verified the reliability of the predicted results. The low expression of miRNA-214-5p was observed in prostate cancer tissues and cells, while high expression of SOX4 was observed in prostate cancer tissues and cells. Results Overexpression of miRNA-214-5p to prostate cancer cells significantly inhibited the proliferation of cancer cells, and the expression of SOX4 was inhibited in the transfected cell line. After transfection of miRNA-214-5p inhibitor into prostate cancer cells, the cell proliferation rate further increased. Meanwhile, overexpression of miRNA-214-5p effectively inhibited the expression of SOX4 downstream factors, including c-Myc, eIF4E, and CDK4. However, the specific knockdown of SOX4 through SOX4 shRNA significantly reduced the proliferation of prostate cancer cell lines. Conclusions miRNA-214-5 can inhibit the proliferation of prostate cancer cells by specifically targeting S0X4 and inhibiting the expression of growth factors downstream of this pathway.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Ewelina Szliszka ◽  
Zenon P. Czuba ◽  
Joanna Bronikowska ◽  
Anna Mertas ◽  
Andrzej Paradysz ◽  
...  

Prostate cancer is a commonly diagnosed cancer in men. The ethanolic extract of propolis (EEP) and its phenolic compounds possess immunomodulatory, chemopreventive and antitumor effects. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/APO2L) is a naturally occurring anticancer agent that preferentially induces apoptosis in cancer cells and is not toxic to normal cells. We examined the cytotoxic and apoptotic effects of EEP and phenolic compounds isolated from propolis in combination with TRAIL on two prostate cancer cell lines, hormone-sensitivity LNCaP and hormone-refractory DU145. The cytotoxicity was evaluated by MTT and LDH assays. The apoptosis was determined using flow cytometry with annexin V-FITC/propidium iodide. The prostate cancer cell lines were proved to be resistant to TRAIL-induced apoptosis. Our study demonstrated that EEP and its components significantly sensitize to TRAIL-induced death in prostate cancer cells. The percentage of the apoptotic cells after cotreatment with 50 μg mL−1EEP and 100 ng mL−1TRAIL increased to 74.9 ± 0.7% for LNCaP and 57.4 ± 0.7% for DU145 cells. The strongest cytotoxic effect on LNCaP cells was exhibited by apigenin, kaempferid, galangin and caffeic acid phenylethyl ester (CAPE) in combination with TRAIL (53.51 ± 0.68–66.06 ± 0.62% death cells). In this work, we showed that EEP markedly augmented TRAIL-mediated apoptosis in prostate cancer cells and suggested the significant role of propolis in chemoprevention of prostate cancer.


2021 ◽  
Author(s):  
Rui Yin ◽  
Jiacheng Song ◽  
Aurora Esquela-Kerscher ◽  
Oliver Kerscher

ABSTRACTSUMO conjugates and SUMO chains form when SUMO, a small ubiquitin-like modifier protein, is covalently linked to other cellular proteins or itself. During unperturbed growth, cells maintain balanced levels of SUMO conjugates. In contrast, eukaryotic cells that are exposed to proteotoxic and genotoxic insults mount a cytoprotective SUMO-Stress Response (SSR). One hallmark of the SSR is a rapid and massive increase of SUMO conjugates in response to oxidative, thermal, and osmotic stress. Here, we use a recombinant fluorescent SUMO biosensor, KmUTAG-fl, to investigate differences in the SSR in a normal human prostate epithelial cell line immortalized with SV40 (PNT2) and two human prostate cancer cell lines that differ in aggressiveness and response to androgen (LNCaP and PC3). In cells that grow unperturbed, SUMO is enriched in the nuclei of all three cell lines. However, upon 30 minutes of exposure to ultraviolet radiation (UV) or oxidative stress, we detected significant cytosolic enrichment of SUMO as measured by KmUTAG-fl staining. This rapid enrichment in cytosolic SUMO levels was on average 5-fold higher in the LNCaP and PC3 prostate cancer cell lines compared to normal immortalized PNT2 cells. Additionally, this enhanced enrichment of cytosolic SUMO was reversible as cells recovered from stress exposure. Our study validates the use of the fluorescent KmUTAG-fl SUMO biosensor to detect differences of SUMO levels and localization between normal and cancer cells and provides new evidence that cancer cells may exhibit an enhanced SSR.


Oncogene ◽  
2019 ◽  
Vol 39 (6) ◽  
pp. 1335-1346 ◽  
Author(s):  
Jianqing Wang ◽  
Chenxi He ◽  
Peng Gao ◽  
Siqing Wang ◽  
Ruitu Lv ◽  
...  

Abstract Prostate cancer is the most common malignancy in men in developed countries. Overexpression of enhancer of zeste homolog 2 (EZH2), the major histone H3 lysine 27 methyltransferase, has been connected to prostate cancer malignancy. However, its downstream genes and pathways have not been well established. Here, we show tumor suppressor Hepatocyte Nuclear Factor 1β (HNF1B) as a direct downstream target of EZH2. EZH2 binds HNF1B locus and suppresses HNF1B expression in prostate cancer cell lines, which is further supported by the reverse correlation between EZH2 and HNF1B expression in clinical samples. Consistently, restored HNF1B expression significantly suppresses EZH2-mediated overgrowth and EMT processes, including migration and invasion of prostate cancer cell lines. Mechanistically, we find that HNF1B primarily binds the promoters of thousands of target genes, and differentially regulates the expression of 876 genes. We also identify RBBP7/RbAP46 as a HNF1B interacting protein which is required for HNF1B-mediated repression of SLUG expression and EMT process. Importantly, we find that higher HNF1B expression strongly predicts better prognosis of prostate cancer, alone or together with lower EZH2 expression. Taken together, we have established a previously underappreciated axis of EZH2-HNF1B-SLUG in prostate cancer, and also provide evidence supporting HNF1B as a potential prognosis marker for metastatic prostate cancer.


Nanoscale ◽  
2017 ◽  
Vol 9 (44) ◽  
pp. 17387-17395 ◽  
Author(s):  
Siyeong Yang ◽  
Hongki Kim ◽  
Kyung Jin Lee ◽  
Seul Gee Hwang ◽  
Eun-Kyung Lim ◽  
...  

Extracellular miR141 and miR375 released from living human prostate cancer cell lines were clearly verified by using an extremely sensitive and specific PNI sensor.


2006 ◽  
Vol 175 (4S) ◽  
pp. 258-258
Author(s):  
Ruth Schwaninger ◽  
Cyrill A. Rentsch ◽  
Antoinette Wetterwald ◽  
Irena Klima ◽  
Gabri Van der Pluijm ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document