scholarly journals Underlying mechanisms of glucocorticoid-induced β-cell death and dysfunction: a new role for glycogen synthase kinase 3

2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Etienne Delangre ◽  
Junjun Liu ◽  
Stefania Tolu ◽  
Kamel Maouche ◽  
Mathieu Armanet ◽  
...  

AbstractGlucocorticoids (GCs) are widely prescribed for their anti-inflammatory and immunosuppressive properties as a treatment for a variety of diseases. The use of GCs is associated with important side effects, including diabetogenic effects. However, the underlying mechanisms of GC-mediated diabetogenic effects in β-cells are not well understood. In this study we investigated the role of glycogen synthase kinase 3 (GSK3) in the mediation of β-cell death and dysfunction induced by GCs. Using genetic and pharmacological approaches we showed that GSK3 is involved in GC-induced β-cell death and impaired insulin secretion. Further, we unraveled the underlying mechanisms of GC-GSK3 crosstalk. We showed that GSK3 is marginally implicated in the nuclear localization of GC receptor (GR) upon ligand binding. Furthermore, we showed that GSK3 regulates the expression of GR at mRNA and protein levels. Finally, we dissected the proper contribution of each GSK3 isoform and showed that GSK3β isoform is sufficient to mediate the pro-apoptotic effects of GCs in β-cells. Collectively, in this work we identified GSK3 as a viable target to mitigate GC deleterious effects in pancreatic β-cells.

2008 ◽  
Vol 51 (7) ◽  
pp. 2196-2207 ◽  
Author(s):  
Hendrik Stukenbrock ◽  
Rainer Mussmann ◽  
Marcus Geese ◽  
Yoan Ferandin ◽  
Olivier Lozach ◽  
...  

2018 ◽  
Vol 51 (5) ◽  
pp. 2185-2197 ◽  
Author(s):  
Lili Men ◽  
Juan Sun ◽  
Decheng Ren

Background/Aims: VCP-interacting membrane selenoprotein (VIMP), an ER resident selenoprotein, is highly expressed in β-cells, however, the role of VIMP in β-cells has not been characterized. In this study, we studied the relationship between VIMP deficiency and β-cell survival in MIN6 insulinoma cells. Methods: To determine the role of VIMP in β-cells, lentiviral VIMP shRNAs were used to knock down (KD) expression of VIMP in MIN6 cells. Cell death was quantified by propidium iodide (PI) staining followed by flow cytometric analyses using a FACS Caliber and FlowJo software. Cell apoptosis and proliferation were determined by TUNEL assay and Ki67 staining, respectively. Cell cycle was analyzed after PI staining. Results: The results show that 1) VIMP suppression induces β-cell apoptosis, which is associated with a decrease in Bcl-xL, and the β-cell apoptosis induced by VIMP suppression can be inhibited by overexpression of Bcl-xL; 2) VIMP knockdown (KD) decreases cell proliferation and G1 cell cycle arrest by accumulating p27 and decreasing E2F1; 3) VIMP KD suppresses unfolded protein response (UPR) activation by regulating the IRE1α and PERK pathways; 4) VIMP KD increases insulin secretion. Conclusion: These results suggest that VIMP may function as a novel regulator to modulate β-cell survival, proliferation, cell cycle, UPR and insulin secretion in MIN6 cells.


2021 ◽  
Vol 86 (5) ◽  
pp. 611-611
Author(s):  
Gregory A. Shilovsky ◽  
Tatyana S. Putyatina ◽  
Galina V. Morgunova ◽  
Alexander V. Seliverstov ◽  
Vasily V. Ashapkin ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e70356 ◽  
Author(s):  
Juhwan Kim ◽  
Miyoung Yang ◽  
Sung-Ho Kim ◽  
Jong-Choon Kim ◽  
Hongbing Wang ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1120 ◽  
Author(s):  
Manisha Gupte ◽  
Prachi Umbarkar ◽  
Anand Prakash Singh ◽  
Qinkun Zhang ◽  
Sultan Tousif ◽  
...  

Obesity is an independent risk factor for cardiovascular diseases (CVD), including heart failure. Thus, there is an urgent need to understand the molecular mechanism of obesity-associated cardiac dysfunction. We recently reported the critical role of cardiomyocyte (CM) Glycogen Synthase Kinase-3 beta (GSK-3β) in cardiac dysfunction associated with a developing obesity model (deletion of CM-GSK-3β prior to obesity). In the present study, we investigated the role of CM-GSK-3β in a clinically more relevant model of established obesity (deletion of CM-GSK-3β after established obesity). CM-GSK-3β knockout (GSK-3βfl/flCre+/−) and controls (GSK-3βfl/flCre−/−) mice were subjected to a high-fat diet (HFD) in order to establish obesity. After 12 weeks of HFD treatment, all mice received tamoxifen injections for five consecutive days to delete GSK-3β specifically in CMs and continued on the HFD for a total period of 55 weeks. To our complete surprise, CM-GSK-3β knockout (KO) animals exhibited a globally improved glucose tolerance and maintained normal cardiac function. Mechanistically, in stark contrast to the developing obesity model, deleting CM-GSK-3β in obese animals did not adversely affect the GSK-3αS21 phosphorylation (activity) and maintained canonical β-catenin degradation pathway and cardiac function. As several GSK-3 inhibitors are in the trial to treat various chronic conditions, including metabolic diseases, these findings have important clinical implications. Specifically, our results provide critical pre-clinical data regarding the safety of GSK-3 inhibition in obese patients.


2015 ◽  
Vol 89 (18) ◽  
pp. 9232-9241 ◽  
Author(s):  
Crystal Woodard ◽  
Gangling Liao ◽  
C. Rory Goodwin ◽  
Jianfei Hu ◽  
Zhi Xie ◽  
...  

ABSTRACTThe Kaposi's sarcoma-associated herpesvirus (KSHV) LANA protein is essential for the replication and maintenance of virus genomes in latently KSHV-infected cells. LANA also drives dysregulated cell growth through a multiplicity of mechanisms that include altering the activity of the cellular kinases extracellular signal-regulated kinase (ERK) and glycogen synthase kinase 3 (GSK-3). To investigate the potential impact of these changes in enzyme activity, we used protein microarrays to identify cell proteins that were phosphorylated by the combination of ERK and GSK-3. The assays identified 58 potential ERK-primed GSK-3 substrates, of which 23 had evidence forin vivophosphorylation in mass spectrometry databases. Two of these, SMAD4 and iASPP, were selected for further analysis and were confirmed as ERK-primed GSK-3 substrates. Cotransfection experiments revealed that iASPP, but not SMAD4, was targeted for degradation in the presence of GSK-3. iASPP interferes with apoptosis induced by p53 family members. To determine the importance of iASPP to KSHV-infected-cell growth, primary effusion lymphoma (PEL) cells were treated with an iASPP inhibitor in the presence or absence of the MDM2 inhibitor Nutlin-3. Drug inhibition of iASPP activity induced apoptosis in BC3 and BCBL1 PEL cells but did not induce poly(ADP-ribose) polymerase (PARP) cleavage in virus-negative BJAB cells. The effect of iASPP inhibition was additive with that of Nutlin-3. Interfering with iASPP function is therefore another mechanism that can sensitize KSHV-positive PEL cells to cell death.IMPORTANCEKSHV is associated with several malignancies, including primary effusion lymphoma (PEL). The KSHV-encoded LANA protein is multifunctional and promotes both cell growth and resistance to cell death. LANA is known to activate ERK and limit the activity of another kinase, GSK-3. To discover ways in which LANA manipulation of these two kinases might impact PEL cell survival, we screened a human protein microarray for ERK-primed GSK-3 substrates. One of the proteins identified, iASPP, showed reduced levels in the presence of GSK-3. Further, blocking iASPP activity increased cell death, particularly in p53 wild-type BC3 PEL cells.


2019 ◽  
Vol 317 (6) ◽  
pp. C1289-C1303 ◽  
Author(s):  
Mahboubeh S. Noori ◽  
Pooja M. Bhatt ◽  
Maria C. Courreges ◽  
Davoud Ghazanfari ◽  
Chaz Cuckler ◽  
...  

Glycogen synthase kinase-3 (GSK-3) is a multitasking protein kinase that regulates numerous critical cellular functions. Not surprisingly, elevated GSK-3 activity has been implicated in a host of diseases including pathological inflammation, diabetes, cancer, arthritis, asthma, bipolar disorder, and Alzheimer’s. Therefore, reagents that inhibit GSK-3 activity provide a means to investigate the role of GSK-3 in cellular physiology and pathophysiology and could become valuable therapeutics. Finding a potent inhibitor of GSK-3 that can selectively target this kinase, among over 500 protein kinases in the human genome, is a significant challenge. Thus there remains a critical need for the identification of selective inhibitors of GSK-3. In this work, we introduce a novel small organic compound, namely COB-187, which exhibits potent and highly selective inhibition of GSK-3. Specifically, this study 1) utilized a molecular screen of 414 kinase assays, representing 404 unique kinases, to reveal that COB-187 is a highly potent and selective inhibitor of GSK-3; 2) utilized a cellular assay to reveal that COB-187 decreases the phosphorylation of canonical GSK-3 substrates indicating that COB-187 inhibits cellular GSK-3 activity; and 3) reveals that a close isomer of COB-187 is also a selective and potent inhibitor of GSK-3. Taken together, these results demonstrate that we have discovered a region of chemical design space that contains novel GSK-3 inhibitors. These inhibitors will help to elucidate the intricate function of GSK-3 and can serve as a starting point for the development of potential therapeutics for diseases that involve aberrant GSK-3 activity.


Sign in / Sign up

Export Citation Format

Share Document