scholarly journals Septin4 promotes cardiomyocytes apoptosis by enhancing the VHL-mediated degradation of HIF-1α

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shaojun Wu ◽  
Ying Zhang ◽  
Shilong You ◽  
Saien Lu ◽  
Naijin Zhang ◽  
...  

AbstractSeptin4, a protein localized at mitochondrion, can promote cells apoptosis mainly by binding XIAP (X-linked inhibitors of apoptosis), however, nothing is known about the role and mechanism of Septin4 in cardiomyocytes apoptosis. Here in the current study, we report that HIF-1α (hypoxia-inducible factor 1 alpha) is a novel interacting protein with Septin4 at Septin4-GTPase domain. In addition, Septin4 enhances the binding between HIF-1α and the E3 ubiquitin ligase VHL (von Hippel-Lindau protein) to down-regulate HIF-1α, and by reducing cardio-protective factor HIF-1α levels, Septin4 aggravated the hypoxia-induced cardiomyocytes apoptosis. We believe these findings will be beneficial to provide effective strategies for clinical treatment of myocardial ischemia and the subsequent injury caused by myocardial hypoxia.

Blood ◽  
2009 ◽  
Vol 114 (10) ◽  
pp. 2015-2019 ◽  
Author(s):  
Gregg L. Semenza

Abstract Red blood cells deliver O2 from the lungs to every cell in the human body. Reduced tissue oxygenation triggers increased production of erythropoietin by hypoxia-inducible factor 1 (HIF-1), which is a transcriptional activator composed of an O2-regulated α subunit and a constitutively expressed β subunit. Hydroxylation of HIF-1α or HIF-2α by the asparaginyl hydroxylase FIH-1 blocks coactivator binding and transactivation. Hydroxylation of HIF-1α or HIF-2α by the prolyl hydroxylase PHD2 is required for binding of the von Hippel-Lindau protein (VHL), leading to ubiquitination and proteasomal degradation. Mutations in the genes encoding VHL, PHD2, and HIF-2α have been identified in patients with familial erythrocytosis. Patients with Chuvash polycythemia, who are homozygous for a missense mutation in the VHL gene, have multisystem pathology attributable to dysregulated oxygen homeostasis. Intense efforts are under way to identify small molecule hydroxylase inhibitors that can be administered chronically to selectively induce erythropoiesis without undesirable side effects.


2002 ◽  
Vol 22 (6) ◽  
pp. 1947-1960 ◽  
Author(s):  
William J. Hansen ◽  
Michael Ohh ◽  
Javid Moslehi ◽  
Keiichi Kondo ◽  
William G. Kaelin ◽  
...  

ABSTRACT We examined the biogenesis of the von Hippel-Lindau (VHL) tumor suppressor protein (pVHL) in vitro and in vivo. pVHL formed a complex with the cytosolic chaperonin containing TCP-1 (CCT or TRiC) en route to assembly with elongin B/C and the subsequent formation of the VCB-Cul2 ubiquitin ligase. Blocking the interaction of pVHL with elongin B/C resulted in accumulation of pVHL within the CCT complex. pVHL present in purified VHL-CCT complexes, when added to rabbit reticulocyte lysate, proceeded to form VCB and VCB-Cul2. Thus, CCT likely functions, at least in part, by retaining VHL chains pending the availability of elongin B/C for final folding and/or assembly. Tumor-associated mutations within exon II of the VHL syndrome had diverse effects upon the stability and/or function of pVHL-containing complexes. First, a pVHL mutant lacking the entire region encoded by exon II did not bind to CCT and yet could still assemble into complexes with elongin B/C and elongin B/C-Cul2. Second, a number of tumor-derived missense mutations in exon II did not decrease CCT binding, and most had no detectable effect upon VCB-Cul2 assembly. Many exon II mutants, however, were found to be defective in the binding to and subsequent ubiquitination of hypoxia-inducible factor 1α (HIF-1α), a substrate of the VCB-Cul2 ubiquitin ligase. We conclude that the selection pressure to mutate VHL exon II during tumorigenesis does not relate to loss of CCT binding but may reflect quantitative or qualitative defects in HIF binding and/or in pVHL-dependent ubiquitin ligase activity.


2002 ◽  
Vol 22 (9) ◽  
pp. 2984-2992 ◽  
Author(s):  
Nianli Sang ◽  
Jie Fang ◽  
Vickram Srinivas ◽  
Irene Leshchinsky ◽  
Jaime Caro

ABSTRACT Hypoxia-inducible factor 1 complex (HIF-1) plays a pivotal role in oxygen homeostasis and adaptation to hypoxia. Its function is controlled by both the protein stability and the transactivation activity of its alpha subunit, HIF-1α. Hydroxylation of at least two prolyl residues in the oxygen-dependent degradation domain of HIF-1α regulates its interaction with the von Hippel-Lindau protein (VHL) that targets HIF-1α for ubiquitination and proteasomal degradation. Several prolyl hydroxylases have been found to specifically hydroxylate HIF-1α. In this report, we investigated possible roles of VHL and hydroxylases in the regulation of the transactivation activity of the C-terminal activating domain (CAD) of HIF-1α. We demonstrate that regulation of the transactivation activity of HIF-1α CAD also involves hydroxylase activity but does not require functional VHL. In addition, stimulation of the CAD activity by a hydoxylase inhibitor, hypoxia, and desferrioxamine was severely blocked by the adenoviral oncoprotein E1A but not by an E1A mutant defective in targeting p300/CBP. We further demonstrate that a hydroxylase inhibitor, hypoxia, and desferrioxamine promote the functional and physical interaction between HIF-1α CAD and p300/CBP in vivo. Taken together, our data provide evidence that hypoxia-regulated stabilization and transcriptional stimulation of HIF-1α function are regulated through partially overlapping but distinguishable pathways.


2002 ◽  
Vol 2 (3) ◽  
pp. 131-135 ◽  
Author(s):  
Sherri K. Leung ◽  
Michael Ohh

Inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene product pVHL is the cause of inherited VHL disease and is associated with sporadic kidney cancer. pVHL is found in a multiprotein complex with elongins B/C, Cul2, and Rbx1 forming an E3 ubiquitin ligase complex called VEC. This modular enzyme targets theαsubunits of hypoxia-inducible factor (HIF) for ubiquitin-mediated destruction. Consequently, tumour cells lacking functional pVHL overproduce the products of HIF-target genes such as vascular endothelial growth factor (VEGF), which promotes angiogenesis. This likely accounts for the hypervascular nature of VHL-associated neoplasms. Although pVHL has been linked to the cell-cycle, differentiation, and the regulation of extracellular matrix assembly, microenvironment pH, and tissue invasiveness, this review will focus on the recent insights into the molecular mechanisms governing the E3 ubiquitin ligase function of VEC.


2003 ◽  
Vol 113 (7) ◽  
pp. 1210-1215 ◽  
Author(s):  
Oliver Adunka ◽  
Wolfgang Gstoettner ◽  
Rainald Knecht ◽  
Antonius C. Kierner

2006 ◽  
Vol 17 (4) ◽  
pp. 1549-1558 ◽  
Author(s):  
Jie Zhou ◽  
Roman Köhl ◽  
Barbara Herr ◽  
Ronald Frank ◽  
Bernhard Brüne

Hypoxia-inducible factor 1 (HIF-1) is controlled through stability regulation of its alpha subunit, which is expressed under hypoxia but degraded under normoxia. Degradation of HIF-1α requires association of the von Hippel Lindau protein (pVHL) to provoke ubiquitination followed by proteasomal digestion. Besides hypoxia, nitric oxide (NO) stabilizes HIF-1α under normoxia but destabilizes the protein under hypoxia. To understand the role of NO under hypoxia we made use of pVHL-deficient renal carcinoma cells (RCC4) that show a high steady state HIF-1α expression under normoxia. Exposing RCC4 cells to hypoxia in combination with the NO donor DETA-NO (2,2′-(hydroxynitrosohydrazono) bis-ethanimine), but not hypoxia or DETA-NO alone, decreased HIF-1α protein and attenuated HIF-1 transactivation. Mechanistically, we noticed a role of calpain because calpain inhibitors reversed HIF-1α degradation. Furthermore, chelating intracellular calcium attenuated HIF-1α destruction by hypoxia/DETA-NO, whereas a calcium increase was sufficient to lower the amount of HIF-1α even under normoxia. An active role of calpain in lowering HIF-1α amount was also evident in pVHL-containing human embryonic kidney cells when the calcium pump inhibitor thapsigargin reduced HIF-1α that was stabilized by the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG). We conclude that calcium contributes to HIF-1α destruction involving the calpain system.


2005 ◽  
Vol 170 (5) ◽  
pp. 733-744 ◽  
Author(s):  
Karim Mekhail ◽  
Mireille Khacho ◽  
Amanda Carrigan ◽  
Robert R.J. Hache ◽  
Lakshman Gunaratnam ◽  
...  

Cellular pathways relay information through dynamic protein interactions. We have assessed the kinetic properties of the murine double minute protein (MDM2) and von Hippel-Lindau (VHL) ubiquitin ligases in living cells under physiological conditions that alter the stability of their respective p53 and hypoxia-inducible factor substrates. Photobleaching experiments reveal that MDM2 and VHL are highly mobile proteins in settings where their substrates are efficiently degraded. The nucleolar architecture converts MDM2 and VHL to a static state in response to regulatory cues that are associated with substrate stability. After signal termination, the nucleolus is able to rapidly release these proteins from static detention, thereby restoring their high mobility profiles. A protein surface region of VHL's β-sheet domain was identified as a discrete [H+]-responsive nucleolar detention signal that targets the VHL/Cullin-2 ubiquitin ligase complex to nucleoli in response to physiological fluctuations in environmental pH. Data shown here provide the first evidence that cells have evolved a mechanism to regulate molecular networks by reversibly switching proteins between a mobile and static state.


Sign in / Sign up

Export Citation Format

Share Document