Pre-ribosomal RNA reorganizes DNA damage repair factors in nucleus during meiotic prophase and DNA damage response

Cell Research ◽  
2022 ◽  
Author(s):  
Xiaochen Gai ◽  
Di Xin ◽  
Duo Wu ◽  
Xin Wang ◽  
Linlin Chen ◽  
...  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Ruixue Huang ◽  
Ping-Kun Zhou

AbstractGenomic instability is the hallmark of various cancers with the increasing accumulation of DNA damage. The application of radiotherapy and chemotherapy in cancer treatment is typically based on this property of cancers. However, the adverse effects including normal tissues injury are also accompanied by the radiotherapy and chemotherapy. Targeted cancer therapy has the potential to suppress cancer cells’ DNA damage response through tailoring therapy to cancer patients lacking specific DNA damage response functions. Obviously, understanding the broader role of DNA damage repair in cancers has became a basic and attractive strategy for targeted cancer therapy, in particular, raising novel hypothesis or theory in this field on the basis of previous scientists’ findings would be important for future promising druggable emerging targets. In this review, we first illustrate the timeline steps for the understanding the roles of DNA damage repair in the promotion of cancer and cancer therapy developed, then we summarize the mechanisms regarding DNA damage repair associated with targeted cancer therapy, highlighting the specific proteins behind targeting DNA damage repair that initiate functioning abnormally duo to extrinsic harm by environmental DNA damage factors, also, the DNA damage baseline drift leads to the harmful intrinsic targeted cancer therapy. In addition, clinical therapeutic drugs for DNA damage and repair including therapeutic effects, as well as the strategy and scheme of relative clinical trials were intensive discussed. Based on this background, we suggest two hypotheses, namely “environmental gear selection” to describe DNA damage repair pathway evolution, and “DNA damage baseline drift”, which may play a magnified role in mediating repair during cancer treatment. This two new hypothesis would shed new light on targeted cancer therapy, provide a much better or more comprehensive holistic view and also promote the development of new research direction and new overcoming strategies for patients.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Nan Huang ◽  
Chang Xu ◽  
Liang Deng ◽  
Xue Li ◽  
Zhixuan Bian ◽  
...  

AbstractPhosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), an essential enzyme involved in de novo purine biosynthesis, is connected with formation of various tumors. However, the specific biological roles and related mechanisms of PAICS in gastric cancer (GC) remain unclear. In the present study, we identified for the first time that PAICS was significantly upregulated in GC and high expression of PAICS was correlated with poor prognosis of patients with GC. In addition, knockdown of PAICS significantly induced cell apoptosis, and inhibited GC cell growth both in vitro and in vivo. Mechanistic studies first found that PAICS was engaged in DNA damage response, and knockdown of PAICS in GC cell lines induced DNA damage and impaired DNA damage repair efficiency. Further explorations revealed that PAICS interacted with histone deacetylase HDAC1 and HDAC2, and PAICS deficiency decreased the expression of DAD51 and inhibited its recruitment to DNA damage sites by impairing HDAC1/2 deacetylase activity, eventually preventing DNA damage repair. Consistently, PAICS deficiency enhanced the sensitivity of GC cells to DNA damage agent, cisplatin (CDDP), both in vitro and in vivo. Altogether, our findings demonstrate that PAICS plays an oncogenic role in GC, which act as a novel diagnosis and prognostic biomarker for patients with GC.


2018 ◽  
Author(s):  
Laura A. Baker ◽  
Christoph Krisp ◽  
Daniel Roden ◽  
Holly Holliday ◽  
Sunny Z. Wu ◽  
...  

AbstractBasal-like breast cancer (BLBC) is a poorly characterised, heterogeneous disease. Patients are diagnosed with aggressive, high-grade tumours and often relapse with chemotherapy resistance. Detailed understanding of the molecular underpinnings of this disease is essential to the development of personalised therapeutic strategies. Inhibitor of Differentiation 4 (ID4) is a helix-loop-helix transcriptional regulator required for mammary gland development. ID4 is overexpressed in a subset of BLBC patients, associating with a stem-like poor prognosis phenotype, and is necessary for the growth of cell line models of BLBC, through unknown mechanisms. Here, we have defined a molecular mechanism of action for ID4 in BLBC and the related disease highgrade serous ovarian cancer (HGSOV), by combining RIME proteomic analysis and ChIP-Seq mapping of genomic binding sites. Remarkably, these studies have revealed novel interactions with DNA damage response proteins, in particular, mediator of DNA damage checkpoint protein 1 (MDC1). Through MDC1, ID4 interacts with other DNA repair proteins (γH2AX and BRCA1) at fragile chromatin sites. ID4 does not affect transcription at these sites, instead binding to chromatin following DNA damage and regulating DNA damage signalling. Clinical analysis demonstrates that ID4 is amplified and overexpressed at a higher frequency in BRCA1-mutant BLBC compared with sporadic BLBC, providing genetic evidence for an interaction between ID4 and DNA damage repair pathways. These data link the interactions of ID4 with MDC1 to DNA damage repair in the aetiology of BLBC and HGSOV.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15640-e15640
Author(s):  
Ruby Yun-Ju Huang ◽  
Xun Hui Yeo ◽  
Wai Leong Tam

e15640 Background: AXL is a receptor tyrosine kinase that is often overexpressed in many cancers. It contributes to tumor progression, metastasis and drug resistance through activating downstream signaling cascades, making it an emerging therapeutic target. The first-in-class AXL inhibitor R428 (BGB321) was approved by the FDA for the treatment of relapsed or refractory acute myeloid leukemia. R428 (BGB321) was also reported to show selective sensitivity towards ovarian cancers (OC) with a Mesenchymal (Mes) molecular subtype. Recently, a novel role of AXL in the regulation of DNA damage responses has been described. In this study, we explored further the role of AXL in mediating DNA damage responses by using OC as a disease model. Methods: OC cell lines were treated with R428. Accumulation of γH2AX positive foci was assessed for DNA damage response. Western blotting for γH2AX, ATM and ATR levels were performed. Dose response curves of ATR inhibitors were generated by treating OC cells with the fixed dose of R428 (IC20 concentration of each cell line). Results: AXL inhibition by using R428 resulted in the increase of DNA damage foci in Mes OC cells SKOV3 and HeyA8. This occurred concurrently with the up-regulation of classic DNA damage response signaling molecules such as γH2AX, ATM and ATR. The IC50 of the ATR inhibitor significantly decreased for 2-3 folds in all OC cell lines tested. AXL inhibitor R428 sensitized both BRCA-mutated and non-BRCA-mutated OC cells to a potent and highly selective ATR inhibitor. Conclusions: Our results showed that AXL inhibition rendered cells more sensitive to the inhibition of ATR, a crucial mediator for replication stress, paving ways to the rationale for potential combinatory use of AXL and DNA damage repair inhibitors.


2021 ◽  
Vol 118 (23) ◽  
pp. e2026595118
Author(s):  
Yardena Silas ◽  
Esti Singer ◽  
Koyeli Das ◽  
Norbert Lehming ◽  
Ophry Pines

Class-II fumarases (fumarate hydratase, FH) are dual-targeted enzymes occurring in the mitochondria and cytosol of all eukaryotes. They are essential components in the DNA damage response (DDR) and, more specifically, protect cells from DNA double-strand breaks. Similarly, the gram-positive bacterium Bacillus subtilis class-II fumarase, in addition to its role in the tricarboxylic acid cycle, participates in the DDR. Escherichia coli harbors three fumarase genes: class-I fumA and fumB and class-II fumC. Notably, class-I fumarases show no sequence similarity to class-II fumarases and are of different evolutionary origin. Strikingly, here we show that E. coli fumarase functions are distributed between class-I fumarases, which participate in the DDR, and the class-II fumarase, which participates in respiration. In E. coli, we discover that the signaling molecule, alpha-ketoglutarate (α-KG), has a function, complementing DNA damage sensitivity of fum-null mutants. Excitingly, we identify the E. coli α-KG–dependent DNA repair enzyme AlkB as the target of this interplay of metabolite signaling. In addition to α-KG, fumarate (fumaric acid) is shown to affect DNA damage repair on two different levels, first by directly inhibiting the DNA damage repair enzyme AlkB demethylase activity, both in vitro and in vivo (countering α-KG). The second is a more global effect on transcription, because fum-null mutants exhibit a decrease in transcription of key DNA damage repair genes. Together, these results show evolutionary adaptable metabolic signaling of the DDR, in which fumarases and different metabolites are recruited regardless of the evolutionary enzyme class performing the function.


2020 ◽  
Vol 12 (531) ◽  
pp. eaaw1868 ◽  
Author(s):  
Stefan Haemmig ◽  
Dafeng Yang ◽  
Xinghui Sun ◽  
Debapria Das ◽  
Siavash Ghaffari ◽  
...  

Long noncoding RNAs (lncRNAs) are emerging regulators of biological processes in the vessel wall; however, their role in atherosclerosis remains poorly defined. We used RNA sequencing to profile lncRNAs derived specifically from the aortic intima of Ldlr−/− mice on a high-cholesterol diet during lesion progression and regression phases. We found that the evolutionarily conserved lncRNA small nucleolar host gene-12 (SNHG12) is highly expressed in the vascular endothelium and decreases during lesion progression. SNHG12 knockdown accelerated atherosclerotic lesion formation by 2.4-fold in Ldlr−/− mice by increased DNA damage and senescence in the vascular endothelium, independent of effects on lipid profile or vessel wall inflammation. Conversely, intravenous delivery of SNHG12 protected the tunica intima from DNA damage and atherosclerosis. LncRNA pulldown in combination with liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis showed that SNHG12 interacted with DNA-dependent protein kinase (DNA-PK), an important regulator of the DNA damage response. The absence of SNHG12 reduced the DNA-PK interaction with its binding partners Ku70 and Ku80, abrogating DNA damage repair. Moreover, the anti-DNA damage agent nicotinamide riboside (NR), a clinical-grade small-molecule activator of NAD+, fully rescued the increases in lesional DNA damage, senescence, and atherosclerosis mediated by SNHG12 knockdown. SNHG12 expression was also reduced in pig and human atherosclerotic specimens and correlated inversely with DNA damage and senescent markers. These findings reveal a role for this lncRNA in regulating DNA damage repair in the vessel wall and may have implications for chronic vascular disease states and aging.


Author(s):  
Fei Li ◽  
Bin Liu ◽  
Xiaolan Zhou ◽  
Quan Xu

DNA damage response induced by ionizing radiation (IR) is an important event involved in the sensitivity and efficiency of radiotherapy in human medulloblastoma. RNF8 is an E3 ubiquitin ligase and has key roles in the process of DNA damage and repair. Our study aimed to evaluate the effect of RNF8 in the DNA damage repair induced by IR exposure in medulloblastoma cells. We found that the levels of RNF8 were significantly upregulated by γ-ray irradiation in a dose-dependent manner in medulloblastoma cells and colocalized with γ-H2AX, a sensitive marker of DNA double-strand breaks induced by γ-ray radiation. RNF8 knockdown was observed to enhance the sensitivity of IR in medulloblastoma cells, as evaluated by reduced cell survival. The apoptosis and cell cycle arrest of medulloblastoma cells were dramatically increased by RNF8 suppression after IR treatment. Furthermore, RNF8 inhibition did not affect the protein levels of BRCA1, a crucial protein involved in IR-induced DNA damage repair, but significantly decreased the recruitment of BRCA1 and increased the level of γ-H2AX at DNA damage sites compared to the control. A significant increase in OTM was observed in medulloblastoma cells treated by RNF8 shRNA after exposure to IR, indicating the effect of RNF8 on DNA damage and repair. Additionally, PCNA, a major target for ubiquitin modification during DNA damage response, was found to be monoubiquitinated by E3 ligase RNF8 and might contribute to the low radiosensitivity in medulloblastoma cells. Altogether, our findings may provide RNF8 as a novel target for the improvement of radiotherapy in medulloblastoma.


2020 ◽  
Author(s):  
Yardena Silas ◽  
Esti Singer ◽  
Norbert Lehming ◽  
Ophry Pines

AbstractClass-II fumarases (Fumarate Hydratase, FH) are dual targeted enzymes, occurring in the mitochondria and cytosol of all eukaryotes. They are essential components in the DNA damage response (DDR) and more specifically, protecting cells from DNA double strand breaks. Similarly, the Gram-positive Bacterium Bacillus subtilis Class-II fumarase, in addition to its role in the TCA cycle, also participates in the DDR. Escherichia coli, harbors three fumarase genes; Class-I fumA and fumB and Class-II fumC. Notably, Class-I fumarases, show no sequence similarity to Class-II fumarases and are of different evolutionary origin. Strikingly, here we show that E. coli fumarase functions are distributed between Class-I fumarases which participate in the DDR, and the Class-II fumarase which participates in respiration. In E. coli, we discover that the signaling molecule, alpha-ketoglutarate (α-KG), has a novel function, complementing DNA damage sensitivity of fum null mutants. Excitingly, we identify the E. coli α-KG dependent DNA repair enzyme AlkB, as the target of this interplay of metabolite signaling. In addition to α-KG, fumarate (fumaric acid) is shown to affect DNA damage repair on two different levels, first by directly inhibiting the DNA damage repair enzyme AlkB demethylase activity, both in vitro and in vivo (countering α-KG). The second is a more global effect on transcription, as fum null mutants exhibit a decrease in transcription of key DNA damage repair genes. Together these results show evolutionary adaptable metabolic signaling of the DDR in which fumarases and different metabolites are recruited regardless of the evolutionary enzyme Class preforming the function.Significance StatementClass-II fumarases have been shown to participate in cellular respiration and the DNA damage response. Here we show, for the first time, that in the model prokaryote,Escherichia coli, which harbors both Class-I and Class-II fumarases, it is the Class-I fumarases that participate in DNA damage repair by a mechanism which is different than those described for other fumarases. Strikingly, this mechanism employs a novel signaling molecule, alpha-ketoglutarate (α-KG), and its target is the DNA damage repair enzyme AlkB. In addition, we show that fumarase precursor metabolites, fumarate and succinate, can inhibit the α-KG-dependent DNA damage repair enzyme, AlkB, both in vitro and in vivo. This study provides a new perspective on the function and evolution of metabolic signaling.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3447-3447
Author(s):  
Bérengère de Laval ◽  
Patrycja Pawlikowska ◽  
Benoit Roch ◽  
Laurence Petit-Cocault ◽  
Chrystele Bilhou-Nabera ◽  
...  

Abstract Abstract 3447 Radiation-induced double-strand breaks (DSBs) represent a serious threat to the preservation of genetic information when it reaches hematopoietic stem cells (HSCs). Residual loss of HSC functions and increased risk of developing hematopoietic malignancies are two concerning complications of anti-cancer radiotherapy. Management of acute myelosuppression following radio- or chemotherapy has been significantly improved in recent years by the use of growth factors. However, how cytokine/environmental signals integrate the DNA damage responses in HSCs and regulate the long-term residual HSC defects following radio-or chemotherapy is unknown. Notably, the contribution of cytokines regulating HSC functions to HSC intrinsic DNA damage repair processes remains to be delineated. Thrombopoietin (TPO) and its receptor, Mpl, are critical factors supporting HSC self-renewal, survival and expansion posttransplantation. In this study, we uncover an unknown and unique function for TPO/Mpl in the regulation the DNA damage response. We show that DSB repair, measured by both γH2Ax foci resolution and neutral comet assays, following γ-irradiation (IR) or topoisomerase II inhibitor treatments, is defective in Mpl−/− and Mpl+/− HS and progenitor cells (HSPCs). Similar defects were found in wild-type cells treated in the absence of TPO. This indicates that the impaired DNA repair of Mpl−/− and Mpl+/− cells results from a specific loss of TPO-mediated DNA damage response signaling at the time of IR rather than from intrinsic constitutive differences. TPO stimulates DNA repair by increasing IR-induced DNA-PK phosphorylation at Ser2056 and Thr2609 and non-homologous end joining (NHEJ) efficiency in both HSPCs and the human UT7-Mpl cell line. This is to our knowledge the first demonstration that a cytokine involved in the homeostatic maintenance of HSCs may also regulate their response to external DNA damaging insults by controlling the DSB repair machinery. Short TPO treatment in vitro or single TPO injection to TPO/Mpl proficient mice prior to sublethal total body IR reduced IR-induced HSC genomic instability and loss of long-term reconstitution ability. This may open new avenues for administration of TPO agonists before radiotherapy to minimize radiation-induced HSC injury and mutagenesis. In addition, since Mpl is haploinsufficient in the regulation of DNA damage repair, these data suggest that Mpl might also act as a tumor suppressor in response to radiotherapy. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document