scholarly journals The role of transcriptional factor D-site-binding protein in circadian CCL2 gene expression in anti-Thy1 nephritis

2018 ◽  
Vol 16 (9) ◽  
pp. 735-745 ◽  
Author(s):  
Yang Lu ◽  
Yan Mei ◽  
Lei Chen ◽  
Lingling Wu ◽  
Xu Wang ◽  
...  
Reproduction ◽  
2017 ◽  
Vol 154 (6) ◽  
pp. 723-733 ◽  
Author(s):  
Huijuan Zhang ◽  
Guishuan Wang ◽  
Lin Liu ◽  
Xiaolin Liang ◽  
Yu Lin ◽  
...  

The chromatoid body (CB) is a specific cloud-like structure in the cytoplasm of haploid spermatids. Recent findings indicate that CB is identified as a male germ cell-specific RNA storage and processing center, but its function has remained elusive for decades. In somatic cells, KH-type splicing regulatory protein (KSRP) is involved in regulating gene expression and maturation of select microRNAs (miRNAs). However, the function of KSRP in spermatogenesis remains unclear. In this study, we showed that KSRP partly localizes in CB, as a component of CB. KSRP interacts with proteins (mouse VASA homolog (MVH), polyadenylate-binding protein 1 (PABP1) and polyadenylate-binding protein 2 (PABP2)), mRNAs (Tnp2 and Odf1) and microRNAs (microRNA-182) in mouse CB. Moreover, KSRP may regulate the integrity of CB via DDX5-miRNA-182 pathway. In addition, we found abnormal expressions of CB component in testes of Ksrp-knockout mice and of patients with hypospermatogenesis. Thus, our results provide mechanistic insight into the role of KSRP in spermatogenesis.


2010 ◽  
Vol 426 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Richard W. P. Smith ◽  
Nicola K. Gray

Cytoplasmic PABP [poly(A)-binding protein] is a multifunctional protein with well-studied roles in mRNA translation and stability. In the present review, we examine recent evidence that the activity of PABP is altered during infection with a wide range of viruses, bringing about changes in its stability, complex formation and intracellular localization. Targeting of PABP by both RNA and DNA viruses highlights the role of PABP as a central regulator of gene expression.


2017 ◽  
Vol 114 (37) ◽  
pp. E7812-E7821 ◽  
Author(s):  
Marian Mellén ◽  
Pinar Ayata ◽  
Nathaniel Heintz

5-hydroxymethylcytosine (5hmC) occurs at maximal levels in postmitotic neurons, where its accumulation is cell-specific and correlated with gene expression. Here we demonstrate that the distribution of 5hmC in CG and non-CG dinucleotides is distinct and that it reflects the binding specificity and genome occupancy of methylcytosine binding protein 2 (MeCP2). In expressed gene bodies, accumulation of 5hmCG acts in opposition to 5mCG, resulting in “functional” demethylation and diminished MeCP2 binding, thus facilitating transcription. Non-CG hydroxymethylation occurs predominantly in CA dinucleotides (5hmCA) and it accumulates in regions flanking active enhancers. In these domains, oxidation of 5mCA to 5hmCA does not alter MeCP2 binding or expression of adjacent genes. We conclude that the role of 5-hydroxymethylcytosine in postmitotic neurons is to functionally demethylate expressed gene bodies while retaining the role of MeCP2 in chromatin organization.


1999 ◽  
Vol 96 (6) ◽  
pp. 3223-3227 ◽  
Author(s):  
A. O. Gramolini ◽  
L. M. Angus ◽  
L. Schaeffer ◽  
E. A. Burton ◽  
J. M. Tinsley ◽  
...  

2010 ◽  
Vol 24 (12) ◽  
pp. 1317-1328 ◽  
Author(s):  
M. Stratmann ◽  
F. Stadler ◽  
F. Tamanini ◽  
G. T. J. van der Horst ◽  
J. A. Ripperger

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Zhe Geng ◽  
Ping Li ◽  
Li Tan ◽  
Houyan Song

RNA-binding protein TIAR has been suggested to mediate the translational silencing of ARE-containing mRNAs. To analyze the functions of TIAR, we established RNAi and genetic rescue assays. We evaluated the expression of neuroectoderm markers Pax6 and nestin, mesoderm markers brachyury and Flk1, and hypoblast and definitive endoderm markers Sox17 and Gata6 during EB differentiation and found that knockdown TIAR expression restrained the differentiation of E14 cells. We assessed gene expression levels of Flk-1 and VE-cadherin and observed attenuated differentiation of E14 cells into endothelial cells upon downregulation of TIAR gene expression. As such, we hypothesized an essential role of TIAR related to EB differentiation. As TIAR inhibits the translation of c-myc, we proposed that downregulation of TIAR results in restrained differentiation of E14 cells, due in part to the function of c-myc. We found that TIAR inhibited c-myc expression at the translational level in E14 cells; accordingly, a reduction of TIAR expression promoted self-renewal of pluripotent cells and attenuated differentiation. Additionally, we established that TIAR inhibited TIA-1 expression at the translational level in E14 cells. Taken together, we have contributed to the understanding of the regulatory relationships between TIAR and both c-myc and TIA-1.


2000 ◽  
Vol 349 (1) ◽  
pp. 13-17 ◽  
Author(s):  
Mark FLEISCHMANN ◽  
Patrick B. IYNEDJIAN

Insulin stimulates the transcription of the sterol regulatory- element binding protein (SREBP) 1/ADD1 gene in liver. Hepatocytes in primary culture were used to delineate the insulin signalling pathway for induction of SREBP1 gene expression. The inhibitors of phosphoinositide 3-kinase (PI 3-kinase), wortmannin and LY 294002, abolished the insulin-dependent increase in SREBP1 mRNA, whereas the inhibitor of the mitogen- activated protein kinase cascade, PD 98059, was without effect. To investigate the role of protein kinase B (PKB)/cAkt downstream of PI 3-kinase, hepatocytes were transduced with an adenovirus encoding a PKB-oestrogen receptor fusion protein. The PKB activity of this recombinant protein was rapidly activated in hepatocytes challenged with 4-hydroxytamoxifen (OHT), as was endogenous PKB in hepatocytes challenged with insulin. The addition of OHT to transduced hepatocytes resulted in accumulation of SREBP1 mRNA, with a time-course and magnitude similar to the effect of insulin in non-transduced cells. The level of SREBP1 mRNA was not increased by OHT in hepatocytes expressing a mutant form of the recombinant protein whose PKB activity was not activated by OHT. Thus acute activation of PKB is sufficient to induce SREBP1 mRNA accumulation in primary hepatocytes, and might be the major signalling event by which insulin induces SREBP1 gene expression in the liver.


Sign in / Sign up

Export Citation Format

Share Document