scholarly journals The intragraft vascularized bone marrow component plays a critical role in tolerance induction after reconstructive transplantation

Author(s):  
Cheng-Hung Lin ◽  
Madonna R. Anggelia ◽  
Hui-Yun Cheng ◽  
Aline Yen Ling Wang ◽  
Wen-Yu Chuang ◽  
...  
1998 ◽  
Vol 11 (7) ◽  
pp. S299-S302 ◽  
Author(s):  
M. Durlik ◽  
B. Lukomska ◽  
P. Religa ◽  
H. Ziolkowska ◽  
A. Namysłowski ◽  
...  

1998 ◽  
Vol 11 (s1) ◽  
pp. S299-S302
Author(s):  
M. Durlik ◽  
B. Lukomska ◽  
P. Religa ◽  
H. Ziolkowska ◽  
A. Namyslowski ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Courtney B. Johnson ◽  
Jizhou Zhang ◽  
Daniel Lucas

Hematopoiesis in the bone marrow (BM) is the primary source of immune cells. Hematopoiesis is regulated by a diverse cellular microenvironment that supports stepwise differentiation of multipotent stem cells and progenitors into mature blood cells. Blood cell production is not static and the bone marrow has evolved to sense and respond to infection by rapidly generating immune cells that are quickly released into the circulation to replenish those that are consumed in the periphery. Unfortunately, infection also has deleterious effects injuring hematopoietic stem cells (HSC), inefficient hematopoiesis, and remodeling and destruction of the microenvironment. Despite its central role in immunity, the role of the microenvironment in the response to infection has not been systematically investigated. Here we summarize the key experimental evidence demonstrating a critical role of the bone marrow microenvironment in orchestrating the bone marrow response to infection and discuss areas of future research.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Lin Song ◽  
Lijuan Cao ◽  
Rui Liu ◽  
Hui Ma ◽  
Yanan Li ◽  
...  

AbstractGlucocorticoids (GC) are widely used clinically, despite the presence of significant side effects, including glucocorticoid-induced osteoporosis (GIOP). While GC are believed to act directly on osteoblasts and osteoclasts to promote osteoporosis, the detailed underlying molecular mechanism of GC-induced osteoporosis is still not fully elucidated. Here, we show that lymphocytes play a pivotal role in regulating GC-induced osteoporosis. We show that GIOP could not be induced in SCID mice that lack T cells, but it could be re-established by adoptive transfer of splenic T cells from wild-type mice. As expected, T cells in the periphery are greatly reduced by GC; instead, they accumulate in the bone marrow where they are protected from GC-induced apoptosis. These bone marrow T cells in GC-treated mice express high steady-state levels of NF-κB receptor activator ligand (RANKL), which promotes the formation and maturation of osteoclasts and induces osteoporosis. Taken together, these findings reveal a critical role for T cells in GIOP.


2003 ◽  
Vol 75 (9) ◽  
pp. 1591-1593 ◽  
Author(s):  
Chau Y. Tai ◽  
Monet A. France ◽  
Louise F. Strande ◽  
Riva Eydelman ◽  
Xiaoli Sheng ◽  
...  

Blood ◽  
2006 ◽  
Vol 107 (6) ◽  
pp. 2453-2460 ◽  
Author(s):  
Önder Alpdogan ◽  
Vanessa M. Hubbard ◽  
Odette M. Smith ◽  
Neel Patel ◽  
Sydney Lu ◽  
...  

AbstractKeratinocyte growth factor (KGF) is a member of the fibroblast growth factor family that mediates epithelial cell proliferation and differentiation in a variety of tissues, including the thymus. We studied the role of KGF in T-cell development with KGF-/- mice and demonstrated that thymic cellularity and the distribution of thymocyte subsets among KGF-/-, wildtype (WT), and KGF+/- mice were similar. However, KGF-/- mice are more vulnerable to sublethal irradiation (450 cGy), and a significant decrease was found in thymic cellularity after irradiation. Defective thymopoiesis and peripheral T-cell reconstitution were found in KGF-/- recipients of syngeneic or allogeneic bone marrow transplant, but using KGF-/- mice as a donor did not affect T-cell development after transplantation. Despite causing an early developmental block in the thymus, administration of KGF to young and old mice enhanced thymopoiesis. Exogenous KGF also accelerated thymic recovery after irradiation, cyclophosphamide, and dexamethasone treatment. Finally, we found that administering KGF before bone marrow transplantation (BMT) resulted in enhanced thymopoiesis and peripheral T-cell numbers in middle-aged recipients of an allogeneic BM transplant. We conclude that KGF plays a critical role in postnatal thymic regeneration and may be useful in treating immune deficiency conditions. (Blood. 2006;107:2453-2460)


1995 ◽  
Vol &NA; (320) ◽  
pp. 220???230
Author(s):  
Yasushi Taguchi ◽  
Barry P. Pereira ◽  
Anam-Kueh Kour ◽  
Robert W. H. Pho ◽  
Yoke-Sun Lee

mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
David Frank ◽  
Shamoon Naseem ◽  
Gian Luigi Russo ◽  
Cindy Li ◽  
Kaustubh Parashar ◽  
...  

ABSTRACT Mice lacking expression of the homologous phosphatases Sts-1 and Sts-2 (Sts−/− mice) are resistant to disseminated candidiasis caused by the fungal pathogen Candida albicans. To better understand the immunological mechanisms underlying the enhanced resistance of Sts−/− mice, we examined the kinetics of fungal clearance at early time points. In contrast to the rapid C. albicans growth seen in normal kidneys during the first 24 h postinfection, we observed a reduction in kidney fungal CFU within Sts−/− mice beginning at 12 to 18 h postinfection. This corresponds to the time period when large numbers of innate leukocytes enter the renal environment to counter the infection. Because phagocytes of the innate immune system are important for host protection against pathogenic fungi, we evaluated responses of bone marrow leukocytes. Relative to wild-type cells, Sts−/− marrow monocytes and bone marrow-derived dendritic cells (BMDCs) displayed a heightened ability to inhibit C. albicans growth ex vivo. This correlated with significantly enhanced production of reactive oxygen species (ROS) by Sts−/− BMDCs downstream of Dectin-1, a C-type lectin receptor that plays a critical role in stimulating host responses to fungi. We observed no visible differences in the responses of other antifungal effector pathways, including cytokine production and inflammasome activation, despite enhanced activation of the Syk tyrosine kinase downstream of Dectin-1 in Sts−/− cells. Our results highlight a novel mechanism regulating the immune response to fungal infections. Further understanding of this regulatory pathway could aid the development of therapeutic approaches to enhance protection against invasive candidiasis. IMPORTANCE Systemic candidiasis caused by fungal Candida species is becoming an increasingly serious medical problem for which current treatment is inadequate. Recently, the Sts phosphatases were established as key regulators of the host antifungal immune response. In particular, genetic inactivation of Sts significantly enhanced survival of mice infected intravenously with Candida albicans. The Sts−/− in vivo resistance phenotype is associated with reduced fungal burden and an absence of inflammatory lesions. To understand the underlying mechanisms, we studied phagocyte responses. Here, we demonstrate that Sts−/− phagocytes have heightened responsiveness to C. albicans challenge relative to wild-type cells. Our data indicate the Sts proteins negatively regulate phagocyte activation via regulating selective elements of the Dectin-1–Syk tyrosine kinase signaling axis. These results suggest that phagocytes lacking Sts respond to fungal challenge more effectively and that this enhanced responsiveness partially underlies the profound resistance of Sts−/− mice to systemic fungal challenge.


Sign in / Sign up

Export Citation Format

Share Document