scholarly journals Rare variants in KDR, encoding VEGF Receptor 2, are associated with tetralogy of Fallot

Author(s):  
Doris Škorić-Milosavljević ◽  
Najim Lahrouchi ◽  
Fernanda M. Bosada ◽  
Gregor Dombrowsky ◽  
Simon G. Williams ◽  
...  

Abstract Purpose Rare genetic variants in KDR, encoding the vascular endothelial growth factor receptor 2 (VEGFR2), have been reported in patients with tetralogy of Fallot (TOF). However, their role in disease causality and pathogenesis remains unclear. Methods We conducted exome sequencing in a familial case of TOF and large-scale genetic studies, including burden testing, in >1,500 patients with TOF. We studied gene-targeted mice and conducted cell-based assays to explore the role of KDR genetic variation in the etiology of TOF. Results Exome sequencing in a family with two siblings affected by TOF revealed biallelic missense variants in KDR. Studies in knock-in mice and in HEK 293T cells identified embryonic lethality for one variant when occurring in the homozygous state, and a significantly reduced VEGFR2 phosphorylation for both variants. Rare variant burden analysis conducted in a set of 1,569 patients of European descent with TOF identified a 46-fold enrichment of protein-truncating variants (PTVs) in TOF cases compared to controls (P = 7 × 10-11). Conclusion Rare KDR variants, in particular PTVs, strongly associate with TOF, likely in the setting of different inheritance patterns. Supported by genetic and in vivo and in vitro functional analysis, we propose loss-of-function of VEGFR2 as one of the mechanisms involved in the pathogenesis of TOF.

2000 ◽  
Vol 113 (1) ◽  
pp. 59-69 ◽  
Author(s):  
M.F. Carlevaro ◽  
S. Cermelli ◽  
R. Cancedda ◽  
F. Descalzi Cancedda

Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) induces endothelial cell migration and proliferation in culture and is strongly angiogenic in vivo. VEGF synthesis has been shown to occur in both normal and transformed cells. The receptors for the factor have been shown to be localized mainly in endothelial cells, however, the presence of VEGF synthesis and the VEGF receptor in cells other than endothelial cells has been demonstrated. Neoangiogenesis in cartilage growth plate plays a fundamental role in endochondral ossification. We have shown that, in an avian in vitro system for chondrocyte differentiation, VEGF was produced and localized in cell clusters totally resembling in vivo cartilage. The factor was synthesized by hypertrophic chondrocytes and was released into their conditioned medium, which is highly chemotactic for endothelial cells. Antibodies against VEGF inhibited endothelial cell migration induced by chondrocyte conditioned media. Similarly, endothelial cell migration was inhibited also by antibodies directed against the VEGF receptor 2/Flk1 (VEGFR2). In avian and mammalian embryo long bones, immediately before vascular invasion, VEGF was distinctly localized in growth plate hypertrophic chondrocytes. In contrast, VEGF was not observed in quiescent and proliferating chondrocytes earlier in development. VEGF receptor 2 colocalized with the factor both in hypertrophic cartilage in vivo and hypertrophic cartilage engineered in vitro, suggesting an autocrine loop in chondrocytes at the time of their maturation to hypertrophic cells and of cartilage erosion. Regardless of cell exposure to exogenous VEGF, VEGFR-2 phosphorylation was recognized in cultured hypertrophic chondrocytes, supporting the idea of an autocrine functional activation of signal transduction in this non-endothelial cell type as a consequence of the endogenous VEGF production. In summary we propose that VEGF is actively responsible for hypertrophic cartilage neovascularization through a paracrine release by chondrocytes, with invading endothelial cells as a target. Furthermore, VEGF receptor localization and signal transduction in chondrocytes strongly support the hypothesis of a VEGF autocrine activity also in morphogenesis and differentiation of a mesoderm derived cell.


2009 ◽  
Vol 296 (3) ◽  
pp. H893-H899 ◽  
Author(s):  
Jens Kroll ◽  
Daniel Epting ◽  
Katrin Kern ◽  
Christian T. Dietz ◽  
Yuxi Feng ◽  
...  

Vascular endothelial growth factor (VEGF) is an endothelial-specific growth factor that activates the small GTPase RhoA. While the role of RhoA for VEGF-driven endothelial migration and angiogenesis has been studied in detail, the function of its target proteins, the Rho-dependent kinases ROCK I and II, are controversially discussed. Using the mouse model of oxygen-induced proliferative retinopathy, ROCK I/II inhibition by H-1152 resulted in increased angiogenesis. This enhanced angiogenesis, however, was completely blocked by the VEGF-receptor antagonist PTK787/ZK222584. Loss-of-function experiments in endothelial cells revealed that inhibition of ROCK I/II using the pharmacological inhibitor H-1152 and ROCK I/II-specific small-interfering RNAs resulted in a rise of VEGF-driven sprouting angiogenesis. These functional data were biochemically substantiated by showing an enhanced VEGF-receptor kinase insert domain receptor phosphorylation and extracellular signal-regulated kinase 1/2 activation after inhibition of ROCK I/II. Thus our data identify that the inhibition of Rho-dependent kinases ROCK I/II activates angiogenesis both, in vitro and in vivo.


Author(s):  
Bishajit Sarkar ◽  
Md. Asad Ullah ◽  
Syed Sajidul Islam ◽  
Md. Hasanur Rahman

AbstractCancer is caused by a variety of pathways, involving numerous types of enzymes, among them three enzymes: Cyclin dependent kinase-2 (CDK-2), Human topoisomerase IIα and Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) are three most common enzymes that are involved in the cancer development. Although many chemical drugs are available in the market, plant sources are known to contain a wide variety of agents that are known to possess anticancer activity. In this experiment, total thirty compounds were analysed against the mentioned enzymes using different tools of bioinformatics and in silico biology like molecular docking study, druglikeness property experiment, ADME/T test, PASS prediction and P450 site of metabolism prediction as well as DFT calculations to determine three best ligands that have the capability to inhibit the mentioned enzymes. Form the experiment, Epigallocatechin gallate was found to be the best ligand to inhibit CDK-2, Daidzein showed best inhibitory activities towards Human topoisomerase IIα and Quercetin was predicted to be the best agent against VEGFR-2. They were also predicted to be quite safe and effective agents to treat cancer. However, more in vivo and in vitro analysis are required to confirm their safety and efficacy in this regard.


Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1396 ◽  
Author(s):  
Özgür Uslu ◽  
Joerg Herold ◽  
Sandip M. Kanse

Alternative splicing leads to the secretion of multiple forms of vascular endothelial growth factor-A (VEGF-A) that differ in their activity profiles with respect to neovascularization. FSAP (factor VII activating protease) is the zymogen form of a plasma protease that is activated (FSAPa) upon tissue injury via the release of histones. The purpose of the study was to determine if FSAPa regulates VEGF-A activity in vitro and in vivo. FSAP bound to VEGF165, but not VEGF121, and VEGF165 was cleaved in its neuropilin/proteoglycan binding domain. VEGF165 cleavage did not alter its binding to VEGF receptors but diminished its binding to neuropilin. The stimulatory effects of VEGF165 on endothelial cell proliferation, migration, and signal transduction were not altered by FSAP. Similarly, proliferation of VEGF receptor-expressing BAF3 cells, in response to VEGF165, was not modulated by FSAP. In the mouse matrigel model of angiogenesis, FSAP decreased the ability of VEGF165, basic fibroblast growth factor (bFGF), and their combination, to induce neovascularization. Lack of endogenous FSAP in mice did not influence neovascularization. Thus, FSAP inhibited VEGF165-mediated angiogenesis in the matrigel model in vivo, where VEGF’s interaction with the matrix and its diffusion are important.


2008 ◽  
Vol 294 (6) ◽  
pp. H2646-H2652 ◽  
Author(s):  
Stephen B. Marko ◽  
Deborah H. Damon

The sympathetic nervous system, via postganglionic innervation of blood vessels and the heart, is an important determinant of cardiovascular function. The mechanisms underlying sympathetic innervation of targets are not fully understood. This study tests the hypothesis that target-derived vascular endothelial growth factor (VEGF) promotes sympathetic innervation of blood vessels. Western blot and immunohistochemical analyses indicate that VEGF is produced by vascular cells in arteries and that VEGF receptors are expressed on sympathetic nerve fibers innervating arteries. In vitro, exogenously added VEGF and VEGF produced by vascular smooth muscle cells (VSMCs) in sympathetic neurovascular cocultures inhibited semaphorin 3A (Sema3A)-induced collapse of sympathetic growth cones. In the absence of Sema3A, VEGF and VSMCs also increased growth cone area. These effects were mediated via VEGF receptor 1. In vivo, the neutralization of VEGF inhibited the reinnervation of denervated femoral arteries. These data demonstrate that target-derived VEGF plays a previously unrecognized role in promoting the growth of sympathetic axons.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1109
Author(s):  
Hsien-Lin Chen ◽  
Yu-Chieh Su ◽  
Huang-Chi Chen ◽  
Jui-Hsin Su ◽  
Chang-Yi Wu ◽  
...  

Lymphatic metastasis is a biological procedure associated with the pathogenesis of several diseases, especially in tumor metastasis. Therefore, regulation of lymphangiogenesis has become a promising strategy for cancer therapy. In this study, we aimed to investigate the anti-lymphangiogenic effect of heteronemin (SP-1) isolated from the sponge Hyrtios sp. in vitro and in vivo. Human lymphatic endothelial cells (LECs) were utilized to evaluate the anti-lymphangiogenic effect of SP-1 in vitro. Molecular docking, western blotting, flow-cytometry, MTT and ELISA were performed to investigate the mechanism of action. For in vivo approaches, the transgenic (fli1:EGFP; gata1:DsRed) zebrafish and mouse ear sponges were used. Molecular docking studies showed that SP-1 is a potent vascular endothelial growth factor receptor 3 (VEGFR-3)-binding compound. Treatment of LEC with SP-1 reduced the phosphorylation of VEGFR-3. SP-1 suppressed the development of the thoracic duct in zebrafish and mouse lymphangiogenesis ear sponges in vivo. Mechanistically, SP-1 induced the cell cycle arrest of LECs in the G0/G1 phase and reduced the downstream of VEGFR-3, such as phosphorylated MEK/ERK and NF-κB. In addition, SP-1 inhibited LECs’ tubulogenesis and migration through the ARF-1 and MMP-9/VE-cadherin/vimentin. Overall, anti-lymphangiogenic properties of SP-1 occur by downregulating the VEGFR-3 cascade, ARF-1 and MMP-9/VE-cadherin/vimentin. Collectively, these results proposed that SP-1 might be a potential candidate for the treatment of lymphangiogenesis-associated diseases.


2020 ◽  
Author(s):  
Jian-an Pan ◽  
Hao Lin ◽  
Jian-ying Yu ◽  
Hui-li Zhang ◽  
Jun-feng Zhang ◽  
...  

Abstract Background: A relationship between the abundance of epicardial adipose tissue (EAT) and the risk of atrial fibrosis and atrial fibrillation (AF) in diabetes mellitus (DM) has been reported. And previous studies have shown that MicroRNA-21 (miR-21) is a regulatory factor in atrial fibrosis and AF. The aim of this study was to examine the role of different subtypes of miR-21 in EAT browning and atrial fibrosis under hyperglycemia conditions.Methods: In vivo, C57BL/6 wild type (WT) and miR-21 knockout (KO) mice were used to establish the diabetic model by intraperitoneal injection of streptozotocin (STZ). In vitro, the EAT adipocytes from miR-21 KO mice were cultured and transfected with miR-21-3p mimic or miR-21-5p mimic and co-cultured with atrial fibroblasts in both HG or LG conditions. The browning of EAT and the fibrosis of fibroblasts were assessed by western blotting, immunofluorescence, Masson staining, and ELISA. The gain- and loss-of-function experiments were used to identified fibroblast growth factor receptor 1 (FGFR1) as the target gene of miR-21-3p.Results: In patients with DM and/or AF, serum hsa-miR-21-3p, instead of hsa-miR-21-5p, was significantly up-regulated. And miR-21 KO clearly ameliorated the atrial fibrosis in the diabetic mice. miR-21-3p as a key regulator that controls EAT browning and participates in atrial fibrosis under hyperglycemia conditions. Moreover, our gain- and loss-of-function experiments showed that FGFR1, as a direct target of miR-21-3p identified a regulatory pathway in EAT adipocytes. Conclusions: MiR-21-3p regulated EAT browning and participated the process of hyperglycemia-induced atrial fibrosis by targeting FGFR1.


Sign in / Sign up

Export Citation Format

Share Document