scholarly journals MiR-21-3p regulation FGFR1/FGF21/PPARγ pathway induces atrial fibrosis by targeting FGFR1 in diabetes

2020 ◽  
Author(s):  
Jian-an Pan ◽  
Hao Lin ◽  
Jian-ying Yu ◽  
Hui-li Zhang ◽  
Jun-feng Zhang ◽  
...  

Abstract Background: A relationship between the abundance of epicardial adipose tissue (EAT) and the risk of atrial fibrosis and atrial fibrillation (AF) in diabetes mellitus (DM) has been reported. And previous studies have shown that MicroRNA-21 (miR-21) is a regulatory factor in atrial fibrosis and AF. The aim of this study was to examine the role of different subtypes of miR-21 in EAT browning and atrial fibrosis under hyperglycemia conditions.Methods: In vivo, C57BL/6 wild type (WT) and miR-21 knockout (KO) mice were used to establish the diabetic model by intraperitoneal injection of streptozotocin (STZ). In vitro, the EAT adipocytes from miR-21 KO mice were cultured and transfected with miR-21-3p mimic or miR-21-5p mimic and co-cultured with atrial fibroblasts in both HG or LG conditions. The browning of EAT and the fibrosis of fibroblasts were assessed by western blotting, immunofluorescence, Masson staining, and ELISA. The gain- and loss-of-function experiments were used to identified fibroblast growth factor receptor 1 (FGFR1) as the target gene of miR-21-3p.Results: In patients with DM and/or AF, serum hsa-miR-21-3p, instead of hsa-miR-21-5p, was significantly up-regulated. And miR-21 KO clearly ameliorated the atrial fibrosis in the diabetic mice. miR-21-3p as a key regulator that controls EAT browning and participates in atrial fibrosis under hyperglycemia conditions. Moreover, our gain- and loss-of-function experiments showed that FGFR1, as a direct target of miR-21-3p identified a regulatory pathway in EAT adipocytes. Conclusions: MiR-21-3p regulated EAT browning and participated the process of hyperglycemia-induced atrial fibrosis by targeting FGFR1.

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jian-an Pan ◽  
Hao Lin ◽  
Jian-ying Yu ◽  
Hui-li Zhang ◽  
Jun-feng Zhang ◽  
...  

A relationship between excess epicardial adipose tissue (EAT) and the risk of atrial fibrillation (AF) has been reported. Browning of EAT may be a novel approach for the prevention or treatment of AF by attenuating atrial fibrosis. Previous studies have identified microRNA-21 (miR-21) as a regulatory factor in atrial fibrosis. The present study examined the role of different subtypes of miR-21 in adipose browning and atrial fibrosis under hyperglycemic conditions. Wild type and miR-21 knockout C57BL/6 mice were used to establish a diabetic model via intraperitoneal injection of streptozotocin. A coculture model of atrial fibroblasts and adipocytes was also established. We identified miR-21-3p as a key regulator that controls adipocyte browning and participates in atrial fibrosis under hyperglycemic conditions. Moreover, fibroblast growth factor receptor (FGFR) 1, a direct target of miR-21-3p, decreased in this setting and controlled adipose browning. Gain and loss-of-function experiments identified a regulatory pathway in adipocytes involving miR-21a-3p, FGFR1, FGF21, and PPARγ that regulated adipocyte browning and participated in hyperglycemia-induced atrial fibrosis. Modulation of this signaling pathway may provide a therapeutic option for the prevention and treatment of atrial fibrosis or AF in DM.


Author(s):  
Doris Škorić-Milosavljević ◽  
Najim Lahrouchi ◽  
Fernanda M. Bosada ◽  
Gregor Dombrowsky ◽  
Simon G. Williams ◽  
...  

Abstract Purpose Rare genetic variants in KDR, encoding the vascular endothelial growth factor receptor 2 (VEGFR2), have been reported in patients with tetralogy of Fallot (TOF). However, their role in disease causality and pathogenesis remains unclear. Methods We conducted exome sequencing in a familial case of TOF and large-scale genetic studies, including burden testing, in >1,500 patients with TOF. We studied gene-targeted mice and conducted cell-based assays to explore the role of KDR genetic variation in the etiology of TOF. Results Exome sequencing in a family with two siblings affected by TOF revealed biallelic missense variants in KDR. Studies in knock-in mice and in HEK 293T cells identified embryonic lethality for one variant when occurring in the homozygous state, and a significantly reduced VEGFR2 phosphorylation for both variants. Rare variant burden analysis conducted in a set of 1,569 patients of European descent with TOF identified a 46-fold enrichment of protein-truncating variants (PTVs) in TOF cases compared to controls (P = 7 × 10-11). Conclusion Rare KDR variants, in particular PTVs, strongly associate with TOF, likely in the setting of different inheritance patterns. Supported by genetic and in vivo and in vitro functional analysis, we propose loss-of-function of VEGFR2 as one of the mechanisms involved in the pathogenesis of TOF.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10371
Author(s):  
Liqun Tang ◽  
Jianhong Xie ◽  
Xiaoqin Yu ◽  
Yangyang Zheng

Background The role of miR-26a-5p expression in cardiac hypertrophy remains unclear. Herein, the effect of miR-26a-5p on cardiac hypertrophy was investigated using phenylephrine (PE)-induced cardiac hypertrophy in vitro and in a rat model of hypertension-induced hypertrophy in vivo. Methods The PE-induced cardiac hypertrophy models in vitro and vivo were established. To investigate the effect of miR-26a-5p activation on autophagy, the protein expression of autophagosome marker (LC3) and p62 was detected by western blot analysis. To explore the effect of miR-26a-5p activation on cardiac hypertrophy, the relative mRNA expression of cardiac hypertrophy related mark GSK3β was detected by qRT-PCR in vitro and vivo. In addition, immunofluorescence staining was used to detect cardiac hypertrophy related mark α-actinin. The cell surface area was measured by immunofluorescence staining. The direct target relationship between miR-26a-5p and GSK3β was confirmed by dual luciferase report. Results MiR-26a-5p was highly expressed in PE-induced cardiac hypertrophy. MiR-26a-5p promoted LC3II and decreased p62 expression in PE-induced cardiac hypertrophy in the presence or absence of lysosomal inhibitor. Furthermore, miR-26a-5p significantly inhibited GSK3β expression in vitro and in vivo. Dual luciferase report results confirmed that miR-26a-5p could directly target GSK3β. GSK3β overexpression significantly reversed the expression of cardiac hypertrophy-related markers including ANP, ACTA1 and MYH7. Immunofluorescence staining results demonstrated that miR-26a-5p promoted cardiac hypertrophy related protein α-actinin expression, and increased cell surface area in vitro and in vivo. Conclusion Our study revealed that miR-26a-5p promotes myocardial cell autophagy activation and cardiac hypertrophy by regulating GSK3β, which needs further research.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhimin Zhang ◽  
Xiaojuan Lian ◽  
Wei Xie ◽  
Jin Quan ◽  
Maojun Liao ◽  
...  

AbstractResistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) has become the main clinical challenge of advanced lung cancer. This research aimed to explore the role of PARP1-mediated autophagy in the progression of TKI therapy. PARP1-mediated autophagy was evaluated in vitro by CCK-8 assay, clonogenic assay, immunofluorescence, and western blot in the HCC-827, H1975, and H1299 cells treated with icotinib (Ico), rapamycin, and AZD2281 (olaparib) alone or in combination. Our results and GEO dataset analysis confirmed that PARP1 is expressed at lower levels in TKI-sensitive cells than in TKI-resistant cells. Low PARP1 expression and high p62 expression were associated with good outcomes among patients with NSCLC after TKI therapy. AZD2281 and a lysosomal inhibitor reversed resistance to Ico by decreasing PARP1 and LC3 in cells, but an mTOR inhibitor did not decrease Ico resistance. The combination of AZD2281 and Ico exerted a markedly enhanced antitumor effect by reducing PARP1 expression and autophagy in vivo. Knockdown of PARP1 expression reversed the resistance to TKI by the mTOR/Akt/autophagy pathway in HCC-827IR, H1975, and H1299 cells. PARP1-mediated autophagy is a key pathway for TKI resistance in NSCLC cells that participates in the resistance to TKIs. Olaparib may serve as a novel method to overcome the resistance to TKIs.


Reproduction ◽  
2014 ◽  
Vol 147 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Hong-Fei Xia ◽  
Jing-Li Cao ◽  
Xiao-Hua Jin ◽  
Xu Ma

MiR199a was found to be differentially expressed in rat uteri between the prereceptive and receptive phase via microRNA (miRNA) microarray analysis in our previous study. However, the role of miR199a in rat embryo implantation remained unknown. In the study, northern blot results showed that the expression levels of miR199a were higher on gestation days 5 and 6 (g.d.5–6) in rat uteri than on g.d.3–4 and g.d.7–8. In situ localization of miR199a in rat uteri showed that miR199a was mainly localized in the stroma or decidua. The expression of miR199a was not significantly different in the uteri of pseudopregnant rats and evidently increased in the uteri of rats subjected to activation of delayed implantation and experimentally induced decidualization. Treatment with 17β-estradiol or both 17β-estradiol and progesterone significantly diminished miR199a levels. Gain of function of miR199a in endometrial stromal cells isolated from rat uteri inhibited cell proliferation and promoted cell apoptosis. Loss of function of miR199a displayed opposite roles on cell proliferation and apoptosis. Further investigation uncovered a significant inverse association between the expression of miR199a and growth factor receptor-bound protein 10 (Grb10), an imprinted gene, and miR199a could bind to the 3′UTR of Grb10 to inhibit Grb10 translation. In addition, in vivo analysis found that the immunostaining of GRB10 was attenuated in the stroma or decidua from g.d.4 to 6, contrary to the enhancement of miR199a. Collectively, upregulation of miR199a in rat uterus during the receptive phase is regulated by blastocyst activation and uterine decidualization. Enforced miR199a expression suppresses cell proliferation partially through targeting Grb10.


Author(s):  
Marco Giordano ◽  
Alessandra Decio ◽  
Chiara Battistini ◽  
Micol Baronio ◽  
Fabrizio Bianchi ◽  
...  

Abstract Background Cancer stem cells (CSC) have been implicated in tumor progression. In ovarian carcinoma (OC), CSC drive tumor formation, dissemination and recurrence, as well as drug resistance, thus contributing to the high death-to-incidence ratio of this disease. However, the molecular basis of such a pathogenic role of ovarian CSC (OCSC) has been elucidated only to a limited extent. In this context, the functional contribution of the L1 cell adhesion molecule (L1CAM) to OC stemness remains elusive. Methods The expression of L1CAM was investigated in patient-derived OCSC. The genetic manipulation of L1CAM in OC cells provided gain and loss-of-function models that were then employed in cell biological assays as well as in vivo tumorigenesis experiments to assess the role of L1CAM in OC cell stemness and in OCSC-driven tumor initiation. We applied antibody-mediated neutralization to investigate L1CAM druggability. Biochemical approaches were then combined with functional in vitro assays to study the molecular mechanisms underlying the functional role of L1CAM in OCSC. Results We report that L1CAM is upregulated in patient-derived OCSC. Functional studies showed that L1CAM promotes several stemness-related properties in OC cells, including sphere formation, tumor initiation and chemoresistance. These activities were repressed by an L1CAM-neutralizing antibody, pointing to L1CAM as a druggable target. Mechanistically, L1CAM interacted with and activated fibroblast growth factor receptor-1 (FGFR1), which in turn induced the SRC-mediated activation of STAT3. The inhibition of STAT3 prevented L1CAM-dependent OC stemness and tumor initiation. Conclusions Our study implicate L1CAM in the tumorigenic function of OCSC and point to the L1CAM/FGFR1/SRC/STAT3 signaling pathway as a novel driver of OC stemness. We also provide evidence that targeting this pathway can contribute to OC eradication.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Zhijian Jin ◽  
Haoran Feng ◽  
Juyong Liang ◽  
Xiaoqian Jing ◽  
Qiwu Zhao ◽  
...  

Abstract Overexpression of fibroblast growth factor receptor 3 (FGFR3) correlates with more severe clinical features of hepatocellular carcinoma (HCC). Our previous study has shown that FGFR3∆7–9, a novel splicing mutation of FGFR3, contributes significantly to HCC malignant character, but the epigenetic mechanism is still elusive. In this study, through mass spectrometry and co-immunoprecipitation studies, we discover a close association between FGFR3∆7–9 and the DNA demethylase Ten-Eleven Translocation-2 (TET2). Unlike other certain types of cancer, mutation of TET2 is rare in HCC. However, activation of FGFR3∆7–9 by FGF1 dramatically shortens TET2 half-life. FGFR3∆7–9, but not wild-type FGFR3, directly interacts with TET2 and phosphorylates TET2 at Y1902 site, leading to the ubiquitination and proteasome-mediated degradation of TET2. Overexpression of a phospho-deficient mutant TET2 (Y1902F) significantly reduces the oncogenic potential of FGFR3∆7–9 in vitro and in vivo. Furthermore, FGFR3∆7–9 significantly enhances HCC cell proliferation through the TET2-PTEN-AKT pathway. Specifically, TET2 offsets the elevation of p-AKT level induced by FGFR3∆7–9 through directly binding to PTEN promoter and increasing 5-hmC. Therefore, through phosphorylation and inhibition of TET2, FGFR3∆7–9 reduces PTEN expression and substantiates AKT activation to stimulate HCC proliferation. Together, this study identifies TET2 as a key regulator of the oncogenic role of FGFR3∆7–9 in HCC carcinogenesis and sheds light on new therapeutic strategies for HCC treatment.


2020 ◽  
Vol 21 (14) ◽  
pp. 5148
Author(s):  
Rawnaq Esa ◽  
Eliana Steinberg ◽  
Dvir Dror ◽  
Ouri Schwob ◽  
Mehrdad Khajavi ◽  
...  

During the metastasis process, tumor cells invade the blood circulatory system directly from venous capillaries or indirectly via lymphatic vessels. Understanding the relative contribution of each pathway and identifying the molecular targets that affect both processes is critical for reducing cancer spread. Methionine aminopeptidase 2 (MetAp2) is an intracellular enzyme known to modulate angiogenesis. In this study, we investigated the additional role of MetAp2 in lymphangiogenesis. A histological staining of tumors from human breast-cancer donors was performed in order to detect the level and the localization of MetAp2 and lymphatic capillaries. The basal enzymatic level and activity in vascular and lymphatic endothelial cells were compared, followed by loss of function studies determining the role of MetAp2 in lymphangiogenesis in vitro and in vivo. The results from the histological analyses of the tumor tissues revealed a high MetAp2 expression, with detectable sites of co-localization with lymphatic capillaries. We showed slightly reduced levels of the MetAp2 enzyme and MetAp2 mRNA expression and activity in primary lymphatic cells when compared to the vascular endothelial cells. The genetic and biochemical manipulation of MetAp2 confirmed the dual activity of the enzyme in both vascular and lymphatic remodulation in cell function assays and in a zebrafish model. We found that cancer-related lymphangiogenesis is inhibited in murine models following MetAp2 inhibition treatment. Taken together, our study provides an indication that MetAp2 is a significant contributor to lymphangiogenesis and carries a dual role in both vascular and lymphatic capillary formation. Our data suggests that MetAp2 inhibitors can be effectively used as anti-metastatic broad-spectrum drugs.


2007 ◽  
Vol 30 (4) ◽  
pp. 87
Author(s):  
A. E. Lin ◽  
A. Wakeham ◽  
A. You-Ten ◽  
G. Wood ◽  
T. W. Mak

Ubiquitination is a eukaryotic process of selective proteolysis, where a highly conserved ubiquitin protein is selectively added as a chain to the targeted to a protein for degradation. In recent years, the process of ubiquitination has been shown to be a critical mechanism that can affect essential signalling pathways, including apoptosis, cell cycle arrest and induction of the inflammatory response. Thus, alterations in the ubiquitination process can alter signalling pathways pivotal to numerous disease pathologies. This is clearly demonstrated in perturbations of ubiquitination in the NFκB giving rise to cancer and other immunological disease processes. To gain insight into pathways that require regulation by ubiquitination, our lab has directed focus on the highly conserved E3 ligase, Ariadne 2. Ariadne 2 is characterized as a putative RING finger E3 ligase and is part of the family of highly conserved RBR (RING-B-Box-RING) superfamily. The role of Ariadne 2 has been well studied in Drosophila melanogaster, however, little is known of the function of Ariadne 2 in mammalian systems. Therefore, the main objectives of the project are as follows: To determine the biological role of Ariadne 2, the role of Ariadne 2 in development and differentiation, and the consequences of in vivo loss of Ariadne 2 expression. We are currently investigating the role of Ariadne 2 as an E3 ligase and its involvement in the immune response. To date, we have shown that Ariadne 2 is ubiquitously expressed, especially in the brain, heart, spleen and thymus. For in vivo loss of function analysis, mice were generated by homologous recombination to be deficient for Ariadne 2. These deficient mice die prematurely soon after birth, suggesting a critical role for Ariadne 2 in development and survival. We are currently focusing on the role of Ariadne 2 in development and it’s role in immune pathologies, in particular, spontaneous autoimmunity, using both in vitro studies and in vivo models.


Sign in / Sign up

Export Citation Format

Share Document