scholarly journals Chromosome-scale genome assembly of Cucumis hystrix—a wild species interspecifically cross-compatible with cultivated cucumber

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaodong Qin ◽  
Zhonghua Zhang ◽  
Qunfeng Lou ◽  
Lei Xia ◽  
Ji Li ◽  
...  

AbstractCucumis hystrix Chakr. (2n = 2x = 24) is a wild species that can hybridize with cultivated cucumber (C. sativus L., 2n = 2x = 14), a globally important vegetable crop. However, cucumber breeding is hindered by its narrow genetic base. Therefore, introgression from C. hystrix has been anticipated to bring a breakthrough in cucumber improvement. Here, we report the chromosome-scale assembly of C. hystrix genome (289 Mb). Scaffold N50 reached 14.1 Mb. Over 90% of the sequences were anchored onto 12 chromosomes. A total of 23,864 genes were annotated using a hybrid method. Further, we conducted a comprehensive comparative genomic analysis of cucumber, C. hystrix, and melon (C. melo L., 2n = 2x = 24). Whole-genome comparisons revealed that C. hystrix is phylogenetically closer to cucumber than to melon, providing a molecular basis for the success of its hybridization with cucumber. Moreover, expanded gene families of C. hystrix were significantly enriched in “defense response,” and C. hystrix harbored 104 nucleotide-binding site–encoding disease resistance gene analogs. Furthermore, 121 genes were positively selected, and 12 (9.9%) of these were involved in responses to biotic stimuli, which might explain the high disease resistance of C. hystrix. The alignment of whole C. hystrix genome with cucumber genome and self-alignment revealed 45,417 chromosome-specific sequences evenly distributed on C. hystrix chromosomes. Finally, we developed four cucumber–C. hystrix alien addition lines and identified the exact introgressed chromosome using molecular and cytological methods. The assembled C. hystrix genome can serve as a valuable resource for studies on Cucumis evolution and interspecific introgression breeding of cucumber.

2021 ◽  
Author(s):  
Zhenghui Liu ◽  
Yitong Zhao ◽  
Frederick Leo Sossah ◽  
Benjamin Azu Okorley ◽  
Daniel G. Amoako ◽  
...  

Since 2016, devastating bacterial blotch affecting the fruiting bodies of Agaricus bisporus, Cordyceps militaris, Flammulina filiformis, and Pleurotus ostreatus in China has caused severe economic losses. We isolated 102 bacterial strains and characterized them polyphasically. We identified the causal agent as Pseudomonas tolaasii and confirmed the pathogenicity of the strains. A host range test further confirmed the pathogen’s ability to infect multiple hosts. This is the first report in China of bacterial blotch in C. militaris caused by P. tolaasii. Whole-genome sequences were generated for three strains: Pt11 (6.48 Mb), Pt51 (6.63 Mb), and Pt53 (6.80 Mb), and pangenome analysis was performed with 13 other publicly accessible P. tolaasii genomes to determine their genetic diversity, virulence, antibiotic resistance, and mobile genetic elements. The pangenome of P. tolaasii is open, and many more gene families are likely to emerge with further genome sequencing. Multilocus sequence analysis using the sequences of four common housekeeping genes (glns, gyrB, rpoB, and rpoD) showed high genetic variability among the P. tolaasii strains, with 115 strains clustered into a monophyletic group. The P. tolaasii strains possess various genes for secretion systems, virulence factors, carbohydrate-active enzymes, toxins, secondary metabolites, and antimicrobial resistance genes that are associated with pathogenesis and adapted to different environments. The myriad of insertion sequences, integrons, prophages, and genome islands encoded in the strains may contribute to genome plasticity, virulence, and antibiotic resistance. These findings advance understanding of the determinants of virulence, which can be targeted for the effective control of bacterial blotch disease.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Xian-Gui Yi ◽  
Xia-Qing Yu ◽  
Jie Chen ◽  
Min Zhang ◽  
Shao-Wei Liu ◽  
...  

Abstract Cerasus serrulata is a flowering cherry germplasm resource for ornamental purposes. In this work, we present a de novo chromosome-scale genome assembly of C. serrulata by the use of Nanopore and Hi-C sequencing technologies. The assembled C. serrulata genome is 265.40 Mb across 304 contigs and 67 scaffolds, with a contig N50 of 1.56 Mb and a scaffold N50 of 31.12 Mb. It contains 29,094 coding genes, 27,611 (94.90%) of which are annotated in at least one functional database. Synteny analysis indicated that C. serrulata and C. avium have 333 syntenic blocks composed of 14,072 genes. Blocks on chromosome 01 of C. serrulata are distributed on all chromosomes of C. avium, implying that chromosome 01 is the most ancient or active of the chromosomes. The comparative genomic analysis confirmed that C. serrulata has 740 expanded gene families, 1031 contracted gene families, and 228 rapidly evolving gene families. By the use of 656 single-copy orthologs, a phylogenetic tree composed of 10 species was constructed. The present C. serrulata species diverged from Prunus yedoensis ~17.34 million years ago (Mya), while the divergence of C. serrulata and C. avium was estimated to have occurred ∼21.44 Mya. In addition, a total of 148 MADS-box family gene members were identified in C. serrulata, accompanying the loss of the AGL32 subfamily and the expansion of the SVP subfamily. The MYB and WRKY gene families comprising 372 and 66 genes could be divided into seven and eight subfamilies in C. serrulata, respectively, based on clustering analysis. Nine hundred forty-one plant disease-resistance genes (R-genes) were detected by searching C. serrulata within the PRGdb. This research provides high-quality genomic information about C. serrulata as well as insights into the evolutionary history of Cerasus species.


2020 ◽  
Author(s):  
Cong Huang ◽  
Nianwan Yang ◽  
Shuping Wang ◽  
Xiaodan Fan ◽  
Cong Pian ◽  
...  

Abstract Background Invasive alien insects threaten agriculture, biodiversity, and human livelihoods globally. Unfortunately, insect invasiveness still cannot be reliably predicted. Empirical policies of insect pest quarantine and inspection are mainly designed against species that are already problematic. Results We conducted a comparative genomic analysis of 37 invasive insect species and six non-invasive insect species, showing that the gene families associated with defense, protein and nucleic acid metabolism, chemosensory function, and transcriptional regulation were significantly expanded in invasive insects, suggesting that enhanced abilities in self-protection, nutrition exploitation, and locating food or mates are intrinsic features conferring invasiveness in insects. By using these intrinsic genome features, we proposed an invasiveness index and estimated the invasiveness of 99 other insect species with genome data, classifying them as highly, moderately, or minimally invasive. Insects possessing all these aforementioned enhanced abilities are predicted to be highly invasive, and vice versa. Next, a logistic-regression classifier was trained to predict insect invasiveness, achieving 93.2% accuracy. Conclusions We present evidence that several traits may confer invasiveness in insects and these features can be used to predict insect invasiveness accurately, and we quantify insect invasiveness with an invasiveness index.


Author(s):  
Natalia Zajac ◽  
Stefan Zoller ◽  
Katri Seppälä ◽  
David Moi ◽  
Christophe Dessimoz ◽  
...  

Abstract Gene duplications and novel genes have been shown to play a major role in helminth adaptation to a parasitic lifestyle because they provide the novelty necessary for adaptation to a changing environment, such as living in multiple hosts. Here we present the de novo sequenced and annotated genome of the parasitic trematode Atriophallophorus winterbourni and its comparative genomic analysis to other major parasitic trematodes. First, we reconstructed the species phylogeny, and dated the split of A. winterbourni from the Opisthorchiata suborder to approximately 237.4 MYA (± 120.4 MY). We then addressed the question of which expanded gene families and gained genes are potentially involved in adaptation to parasitism. To do this, we used Hierarchical Orthologous Groups to reconstruct three ancestral genomes on the phylogeny leading to A. winterbourni and performed a GO enrichment analysis of the gene composition of each ancestral genome, allowing us to characterize the subsequent genomic changes. Out of the 11,499 genes in the A. winterbourni genome, as much as 24% have arisen through duplication events since the speciation of A. winterbourni from the Opisthorchiata, and as much as 31.9% appear to be novel, i.e. newly acquired. We found 13 gene families in A. winterbourni to have had more than 10 genes arising through these recent duplications; all of which have functions potentially relating to host behavioural manipulation, host tissue penetration, and hiding from host immunity through antigen presentation. We identified several families with genes evolving under positive selection. Our results provide a valuable resource for future studies on the genomic basis of adaptation to parasitism and point to specific candidate genes putatively involved in antagonistic host-parasite adaptation.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Li Huang ◽  
Yazhen Ma ◽  
Jiebei Jiang ◽  
Ting Li ◽  
Wenjie Yang ◽  
...  

AbstractLobularia maritima (L.) Desv. is an ornamental plant cultivated across the world. It belongs to the family Brassicaceae and can tolerate dry, poor and contaminated habitats. Here, we present a chromosome-scale, high-quality genome assembly of L. maritima based on integrated approaches combining Illumina short reads and Hi–C chromosome conformation data. The genome was assembled into 12 pseudochromosomes with a 197.70 Mb length, and it includes 25,813 protein-coding genes. Approximately 41.94% of the genome consists of repetitive sequences, with abundant long terminal repeat transposable elements. Comparative genomic analysis confirmed that L. maritima underwent a species-specific whole-genome duplication (WGD) event ~22.99 million years ago. We identified ~1900 species-specific genes, 25 expanded gene families, and 50 positively selected genes in L. maritima. Functional annotations of these genes indicated that they are mainly related to stress tolerance. These results provide new insights into the stress tolerance of L. maritima, and this genomic resource will be valuable for further genetic improvement of this important ornamental plant.


2021 ◽  
Vol 12 ◽  
Author(s):  
Joung-Ho Lee ◽  
Muhammad Irfan Siddique ◽  
Jin-Kyung Kwon ◽  
Byoung-Cheorl Kang

Phytophthora capsici is an oomycete pathogen responsible for damping off, root rot, fruit rot, and foliar blight in popular vegetable and legume crops. The existence of distinct aggressiveness levels and physiological races among the P. capsici population is a major constraint to developing resistant varieties of host crops. In the present study, we compared the genomes of three P. capsici isolates with different aggressiveness levels to reveal their genomic differences. We obtained genome sequences using short-read and long-read technologies, which yielded an average genome size of 76 Mbp comprising 514 contigs and 15,076 predicted genes. A comparative genomic analysis uncovered the signatures of accelerated evolution, gene family expansions in the pathogenicity-related genes among the three isolates. Resequencing two additional P. capsici isolates enabled the identification of average 1,023,437 SNPs, revealing the frequent accumulation of non-synonymous substitutions in pathogenicity-related gene families. Furthermore, pathogenicity-related gene families, cytoplasmic effectors and ATP binding cassette (ABC) transporters, showed expansion signals in the more aggressive isolates, with a greater number of non-synonymous SNPs. This genomic information explains the plasticity, difference in aggressiveness levels, and genome structural variation among the P. capsici isolates, providing insight into the genomic features related to the evolution and pathogenicity of this oomycete pathogen.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jiawen Cui ◽  
Zhaogeng Lu ◽  
Tianyi Wang ◽  
Gang Chen ◽  
Salma Mostafa ◽  
...  

AbstractMedicago polymorpha is a nutritious and palatable forage and vegetable plant that also fixes nitrogen. Here, we reveal the chromosome-scale genome sequence of M. polymorpha using an integrated approach including Illumina, PacBio and Hi-C technologies. We combined PacBio full-length RNA-seq, metabolomic analysis, structural anatomy analysis and related physiological indexes to elucidate the important agronomic traits of M. polymorpha for forage and vegetable usage. The assembled M. polymorpha genome consisted of 457.53 Mb with a long scaffold N50 of 57.72 Mb, and 92.92% (441.83 Mb) of the assembly was assigned to seven pseudochromosomes. Comparative genomic analysis revealed that expansion and contraction of the photosynthesis and lignin biosynthetic gene families, respectively, led to enhancement of nutritious compounds and reduced lignin biosynthesis in M. polymorpha. In addition, we found that several positively selected nitrogen metabolism-related genes were responsible for crude protein biosynthesis. Notably, the metabolomic results revealed that a large number of flavonoids, vitamins, alkaloids, and terpenoids were enriched in M. polymorpha. These results imply that the decreased lignin content but relatively high nutrient content of M. polymorpha enhance its edibility and nutritional value as a forage and vegetable. Our genomic data provide a genetic basis that will accelerate functional genomic and breeding research on M. polymorpha as well as other Medicago and legume plants.


2020 ◽  
Author(s):  
Ke Cao ◽  
Zhen Peng ◽  
Xing Zhao ◽  
Yong Li ◽  
Kuozhan Liu ◽  
...  

AbstractAs a foundation to understand the molecular mechanisms of peach evolution and high-altitude adaptation, we performed de novo genome assembling of four wild relatives of P. persica, P. mira, P. kansuensis, P. davidiana and P. ferganensis. Through comparative genomic analysis, abundant genetic variations were identified in four wild species when compared to P. persica. Among them, a deletion, located at the promoter of Prupe.2G053600 in P. kansuensis, was validated to regulate the resistance to nematode. Next, a pan-genome was constructed which comprised 15,216 core gene families among four wild peaches and P. perisca. We identified the expanded and contracted gene families in different species and investigated their roles during peach evolution. Our results indicated that P. mira was the primitive ancestor of cultivated peach, and peach evolution was non-linear and a cross event might have occurred between P. mira and P. dulcis during the process. Combined with the selective sweeps identified using accessions of P. mira originating from different altitude regions, we proposed that nitrogen recovery was essential for high-altitude adaptation of P. mira through increasing its resistance to low temperature. The pan-genome constructed in our study provides a valuable resource for developing elite cultivars, studying the peach evolution, and characterizing the high-altitude adaptation in perennial crops.


Sign in / Sign up

Export Citation Format

Share Document