scholarly journals A chromosome-scale reference genome of Lobularia maritima, an ornamental plant with high stress tolerance

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Li Huang ◽  
Yazhen Ma ◽  
Jiebei Jiang ◽  
Ting Li ◽  
Wenjie Yang ◽  
...  

AbstractLobularia maritima (L.) Desv. is an ornamental plant cultivated across the world. It belongs to the family Brassicaceae and can tolerate dry, poor and contaminated habitats. Here, we present a chromosome-scale, high-quality genome assembly of L. maritima based on integrated approaches combining Illumina short reads and Hi–C chromosome conformation data. The genome was assembled into 12 pseudochromosomes with a 197.70 Mb length, and it includes 25,813 protein-coding genes. Approximately 41.94% of the genome consists of repetitive sequences, with abundant long terminal repeat transposable elements. Comparative genomic analysis confirmed that L. maritima underwent a species-specific whole-genome duplication (WGD) event ~22.99 million years ago. We identified ~1900 species-specific genes, 25 expanded gene families, and 50 positively selected genes in L. maritima. Functional annotations of these genes indicated that they are mainly related to stress tolerance. These results provide new insights into the stress tolerance of L. maritima, and this genomic resource will be valuable for further genetic improvement of this important ornamental plant.

Author(s):  
Xinghua Lin ◽  
Yang Huang ◽  
Dongneng Jiang ◽  
Huapu Chen ◽  
Siping Deng ◽  
...  

Abstract Silver sillago, Sillago sihama is a member of the family Sillaginidae and found in all Chinese inshore waters. It is an emerging commercial marine aquaculture species in China. In this study, high-quality chromosome-level reference genome of S. sihama was first constructed using PacBio Sequel sequencing and high-throughput chromosome conformation capture (Hi-C) technique. A total of 66.16 Gb clean reads were generated by PacBio sequencing platforms. The genome-scale was 521.63 Mb with 556 contigs, and 13.54 Mb of contig N50 length. Additionally, Hi-C scaffolding of the genome resulted in 24 chromosomes containing 96.93% of the total assembled sequences. A total of 23,959 protein-coding genes were predicted in the genome, and 96.51% of the genes were functionally annotated in public databases. A total of 71.86 Mb repetitive elements were detected, accounting for 13.78% of the genome. The phylogenetic relationships of silver sillago with other teleosts showed that silver sillago was separated from the common ancestor of S. sinica about 7.92 million years ago. Comparative genomic analysis of silver sillago with other teleosts showed that 45 unique and 100 expansion gene families were identified in silver sillago. In this study, the genomic resources provide valuable reference genomes for functional genomics research of silver sillago.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaodong Qin ◽  
Zhonghua Zhang ◽  
Qunfeng Lou ◽  
Lei Xia ◽  
Ji Li ◽  
...  

AbstractCucumis hystrix Chakr. (2n = 2x = 24) is a wild species that can hybridize with cultivated cucumber (C. sativus L., 2n = 2x = 14), a globally important vegetable crop. However, cucumber breeding is hindered by its narrow genetic base. Therefore, introgression from C. hystrix has been anticipated to bring a breakthrough in cucumber improvement. Here, we report the chromosome-scale assembly of C. hystrix genome (289 Mb). Scaffold N50 reached 14.1 Mb. Over 90% of the sequences were anchored onto 12 chromosomes. A total of 23,864 genes were annotated using a hybrid method. Further, we conducted a comprehensive comparative genomic analysis of cucumber, C. hystrix, and melon (C. melo L., 2n = 2x = 24). Whole-genome comparisons revealed that C. hystrix is phylogenetically closer to cucumber than to melon, providing a molecular basis for the success of its hybridization with cucumber. Moreover, expanded gene families of C. hystrix were significantly enriched in “defense response,” and C. hystrix harbored 104 nucleotide-binding site–encoding disease resistance gene analogs. Furthermore, 121 genes were positively selected, and 12 (9.9%) of these were involved in responses to biotic stimuli, which might explain the high disease resistance of C. hystrix. The alignment of whole C. hystrix genome with cucumber genome and self-alignment revealed 45,417 chromosome-specific sequences evenly distributed on C. hystrix chromosomes. Finally, we developed four cucumber–C. hystrix alien addition lines and identified the exact introgressed chromosome using molecular and cytological methods. The assembled C. hystrix genome can serve as a valuable resource for studies on Cucumis evolution and interspecific introgression breeding of cucumber.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hong-Lei Li ◽  
Lin Wu ◽  
Zhaoming Dong ◽  
Yusong Jiang ◽  
Sanjie Jiang ◽  
...  

AbstractGinger (Zingiber officinale), the type species of Zingiberaceae, is one of the most widespread medicinal plants and spices. Here, we report a high-quality, chromosome-scale reference genome of ginger ‘Zhugen’, a traditionally cultivated ginger in Southwest China used as a fresh vegetable, assembled from PacBio long reads, Illumina short reads, and high-throughput chromosome conformation capture (Hi-C) reads. The ginger genome was phased into two haplotypes, haplotype 1 (1.53 Gb with a contig N50 of 4.68 M) and haplotype 0 (1.51 Gb with a contig N50 of 5.28 M). Homologous ginger chromosomes maintained excellent gene pair collinearity. In 17,226 pairs of allelic genes, 11.9% exhibited differential expression between alleles. Based on the results of ginger genome sequencing, transcriptome analysis, and metabolomic analysis, we proposed a backbone biosynthetic pathway of gingerol analogs, which consists of 12 enzymatic gene families, PAL, C4H, 4CL, CST, C3’H, C3OMT, CCOMT, CSE, PKS, AOR, DHN, and DHT. These analyses also identified the likely transcription factor networks that regulate the synthesis of gingerol analogs. Overall, this study serves as an excellent resource for further research on ginger biology and breeding, lays a foundation for a better understanding of ginger evolution, and presents an intact biosynthetic pathway for species-specific gingerol biosynthesis.


2021 ◽  
Author(s):  
Zhenghui Liu ◽  
Yitong Zhao ◽  
Frederick Leo Sossah ◽  
Benjamin Azu Okorley ◽  
Daniel G. Amoako ◽  
...  

Since 2016, devastating bacterial blotch affecting the fruiting bodies of Agaricus bisporus, Cordyceps militaris, Flammulina filiformis, and Pleurotus ostreatus in China has caused severe economic losses. We isolated 102 bacterial strains and characterized them polyphasically. We identified the causal agent as Pseudomonas tolaasii and confirmed the pathogenicity of the strains. A host range test further confirmed the pathogen’s ability to infect multiple hosts. This is the first report in China of bacterial blotch in C. militaris caused by P. tolaasii. Whole-genome sequences were generated for three strains: Pt11 (6.48 Mb), Pt51 (6.63 Mb), and Pt53 (6.80 Mb), and pangenome analysis was performed with 13 other publicly accessible P. tolaasii genomes to determine their genetic diversity, virulence, antibiotic resistance, and mobile genetic elements. The pangenome of P. tolaasii is open, and many more gene families are likely to emerge with further genome sequencing. Multilocus sequence analysis using the sequences of four common housekeeping genes (glns, gyrB, rpoB, and rpoD) showed high genetic variability among the P. tolaasii strains, with 115 strains clustered into a monophyletic group. The P. tolaasii strains possess various genes for secretion systems, virulence factors, carbohydrate-active enzymes, toxins, secondary metabolites, and antimicrobial resistance genes that are associated with pathogenesis and adapted to different environments. The myriad of insertion sequences, integrons, prophages, and genome islands encoded in the strains may contribute to genome plasticity, virulence, and antibiotic resistance. These findings advance understanding of the determinants of virulence, which can be targeted for the effective control of bacterial blotch disease.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shuang Wu ◽  
Jinyuan Chen ◽  
Ying Li ◽  
Ai Liu ◽  
Ao Li ◽  
...  

Abstract Background Although plastomes are highly conserved with respect to gene content and order in most photosynthetic angiosperms, extensive genomic rearrangements have been reported in Fabaceae, particularly within the inverted repeat lacking clade (IRLC) of Papilionoideae. Two hypotheses, i.e., the absence of the IR and the increased repeat content, have been proposed to affect the stability of plastomes. However, this is still unclear for the IRLC species. Here, we aimed to investigate the relationships between repeat content and the degree of genomic rearrangements in plastomes of Medicago and its relatives Trigonella and Melilotus, which are nested firmly within the IRLC. Results We detected abundant repetitive elements and extensive genomic rearrangements in the 75 newly assembled plastomes of 20 species, including gene loss, intron loss and gain, pseudogenization, tRNA duplication, inversion, and a second independent IR gain (IR ~ 15 kb in Melilotus dentata) in addition to the previous first reported cases in Medicago minima. We also conducted comparative genomic analysis to evaluate plastome evolution. Our results indicated that the overall repeat content is positively correlated with the degree of genomic rearrangements. Some of the genomic rearrangements were found to be directly linked with repetitive sequences. Tandem repeated sequences have been detected in the three genes with accelerated substitution rates (i.e., accD, clpP, and ycf1) and their length variation could be explained by the insertions of tandem repeats. The repeat contents of the three localized hypermutation regions around these three genes with accelerated substitution rates are also significantly higher than that of the remaining plastome sequences. Conclusions Our results suggest that IR reemergence in the IRLC species does not ensure their plastome stability. Instead, repeat-mediated illegitimate recombination is the major mechanism leading to genome instability, a pattern in agreement with recent findings in other angiosperm lineages. The plastome data generated herein provide valuable genomic resources for further investigating the plastome evolution in legumes.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Lisong Hu ◽  
Zhongping Xu ◽  
Maojun Wang ◽  
Rui Fan ◽  
Daojun Yuan ◽  
...  

Abstract Black pepper (Piper nigrum), dubbed the ‘King of Spices’ and ‘Black Gold’, is one of the most widely used spices. Here, we present its reference genome assembly by integrating PacBio, 10x Chromium, BioNano DLS optical mapping, and Hi-C mapping technologies. The 761.2 Mb sequences (45 scaffolds with an N50 of 29.8 Mb) are assembled into 26 pseudochromosomes. A phylogenomic analysis of representative plant genomes places magnoliids as sister to the monocots-eudicots clade and indicates that black pepper has diverged from the shared Laurales-Magnoliales lineage approximately 180 million years ago. Comparative genomic analyses reveal specific gene expansions in the glycosyltransferase, cytochrome P450, shikimate hydroxycinnamoyl transferase, lysine decarboxylase, and acyltransferase gene families. Comparative transcriptomic analyses disclose berry-specific upregulated expression in representative genes in each of these gene families. These data provide an evolutionary perspective and shed light on the metabolic processes relevant to the molecular basis of species-specific piperine biosynthesis.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Xian-Gui Yi ◽  
Xia-Qing Yu ◽  
Jie Chen ◽  
Min Zhang ◽  
Shao-Wei Liu ◽  
...  

Abstract Cerasus serrulata is a flowering cherry germplasm resource for ornamental purposes. In this work, we present a de novo chromosome-scale genome assembly of C. serrulata by the use of Nanopore and Hi-C sequencing technologies. The assembled C. serrulata genome is 265.40 Mb across 304 contigs and 67 scaffolds, with a contig N50 of 1.56 Mb and a scaffold N50 of 31.12 Mb. It contains 29,094 coding genes, 27,611 (94.90%) of which are annotated in at least one functional database. Synteny analysis indicated that C. serrulata and C. avium have 333 syntenic blocks composed of 14,072 genes. Blocks on chromosome 01 of C. serrulata are distributed on all chromosomes of C. avium, implying that chromosome 01 is the most ancient or active of the chromosomes. The comparative genomic analysis confirmed that C. serrulata has 740 expanded gene families, 1031 contracted gene families, and 228 rapidly evolving gene families. By the use of 656 single-copy orthologs, a phylogenetic tree composed of 10 species was constructed. The present C. serrulata species diverged from Prunus yedoensis ~17.34 million years ago (Mya), while the divergence of C. serrulata and C. avium was estimated to have occurred ∼21.44 Mya. In addition, a total of 148 MADS-box family gene members were identified in C. serrulata, accompanying the loss of the AGL32 subfamily and the expansion of the SVP subfamily. The MYB and WRKY gene families comprising 372 and 66 genes could be divided into seven and eight subfamilies in C. serrulata, respectively, based on clustering analysis. Nine hundred forty-one plant disease-resistance genes (R-genes) were detected by searching C. serrulata within the PRGdb. This research provides high-quality genomic information about C. serrulata as well as insights into the evolutionary history of Cerasus species.


2020 ◽  
Author(s):  
Cong Huang ◽  
Nianwan Yang ◽  
Shuping Wang ◽  
Xiaodan Fan ◽  
Cong Pian ◽  
...  

Abstract Background Invasive alien insects threaten agriculture, biodiversity, and human livelihoods globally. Unfortunately, insect invasiveness still cannot be reliably predicted. Empirical policies of insect pest quarantine and inspection are mainly designed against species that are already problematic. Results We conducted a comparative genomic analysis of 37 invasive insect species and six non-invasive insect species, showing that the gene families associated with defense, protein and nucleic acid metabolism, chemosensory function, and transcriptional regulation were significantly expanded in invasive insects, suggesting that enhanced abilities in self-protection, nutrition exploitation, and locating food or mates are intrinsic features conferring invasiveness in insects. By using these intrinsic genome features, we proposed an invasiveness index and estimated the invasiveness of 99 other insect species with genome data, classifying them as highly, moderately, or minimally invasive. Insects possessing all these aforementioned enhanced abilities are predicted to be highly invasive, and vice versa. Next, a logistic-regression classifier was trained to predict insect invasiveness, achieving 93.2% accuracy. Conclusions We present evidence that several traits may confer invasiveness in insects and these features can be used to predict insect invasiveness accurately, and we quantify insect invasiveness with an invasiveness index.


2020 ◽  
Author(s):  
Eiseul Kim ◽  
Seung-Min Yang ◽  
Bora Lim ◽  
Si Hong Park ◽  
Bryna Rackerby ◽  
...  

Abstract Background Lactobacillus species are used as probiotics and play an important role in fermented food production. However, use of 16S rRNA gene sequences as standard markers for the differentiation of Lactobacillus species offers a very limited scope, as several species of Lactobacillus share similar 16S rRNA gene sequences. In this study, we developed a rapid and accurate method based on comparative genomic analysis for the simultaneous identification of 37 Lactobacillus species that are commonly used in probiotics and fermented foods. Results To select species-specific sequences or genes, a total of 180 Lactobacillus genome sequences were compared using Python scripts. In 14 out of 37 species, species-specific sequences could not be found due to the similarity of the 16S–23S rRNA gene. Selected unique genes were obtained using comparative genomic analysis and all genes were confirmed to be specific for 52,478,804 genomes via in silico analysis; they were found not to be strain-specific, but to exist in all strains of the same species. Species-specific primer pairs were designed from the selected 16S–23S rRNA gene sequences or unique genes of species. The specificity of the species-specific primer pairs was confirmed using reference strains, and the accuracy and efficiency of the polymerase chain reaction (PCR) with the standard curve were confirmed. The PCR method developed in this study is able to accurately differentiate species that were not distinguishable using the 16S rRNA gene alone. This PCR assays were designed to detect and identify 37 Lactobacillus species. The developed method was then applied in the monitoring of 19 probiotics and 12 dairy products. The applied tests confirmed that the species detected in 17 products matched those indicated on their labels, whereas the remaining products contained species other than those appearing on the label. Conclusions The method developed in this study is able to rapidly and accurately distinguish different species of Lactobacillus , and can be used to monitor specific Lactobacillus species in foods such as probiotics and dairy products.


Author(s):  
Natalia Zajac ◽  
Stefan Zoller ◽  
Katri Seppälä ◽  
David Moi ◽  
Christophe Dessimoz ◽  
...  

Abstract Gene duplications and novel genes have been shown to play a major role in helminth adaptation to a parasitic lifestyle because they provide the novelty necessary for adaptation to a changing environment, such as living in multiple hosts. Here we present the de novo sequenced and annotated genome of the parasitic trematode Atriophallophorus winterbourni and its comparative genomic analysis to other major parasitic trematodes. First, we reconstructed the species phylogeny, and dated the split of A. winterbourni from the Opisthorchiata suborder to approximately 237.4 MYA (± 120.4 MY). We then addressed the question of which expanded gene families and gained genes are potentially involved in adaptation to parasitism. To do this, we used Hierarchical Orthologous Groups to reconstruct three ancestral genomes on the phylogeny leading to A. winterbourni and performed a GO enrichment analysis of the gene composition of each ancestral genome, allowing us to characterize the subsequent genomic changes. Out of the 11,499 genes in the A. winterbourni genome, as much as 24% have arisen through duplication events since the speciation of A. winterbourni from the Opisthorchiata, and as much as 31.9% appear to be novel, i.e. newly acquired. We found 13 gene families in A. winterbourni to have had more than 10 genes arising through these recent duplications; all of which have functions potentially relating to host behavioural manipulation, host tissue penetration, and hiding from host immunity through antigen presentation. We identified several families with genes evolving under positive selection. Our results provide a valuable resource for future studies on the genomic basis of adaptation to parasitism and point to specific candidate genes putatively involved in antagonistic host-parasite adaptation.


Sign in / Sign up

Export Citation Format

Share Document