scholarly journals Annexin A4 and A6 induce membrane curvature and constriction during cell membrane repair

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Theresa Louise Boye ◽  
Kenji Maeda ◽  
Weria Pezeshkian ◽  
Stine Lauritzen Sønder ◽  
Swantje Christin Haeger ◽  
...  
2020 ◽  
Vol 27 (22) ◽  
pp. 3600-3610 ◽  
Author(s):  
Adam Cohen Simonsen ◽  
Theresa Louise Boye ◽  
Jesper Nylandsted

The plasma membrane of eukaryotic cells defines the boundary to the extracellular environment and, thus provides essential protection from the surroundings. Consequently, disruptions to the cell membrane triggered by excessive mechanical or biochemical stresses pose fatal threats to cells, which they need to cope with to survive. Eukaryotic cells cope with these threats by activating their plasma membrane repair system, which is shared by other cellular functions, and includes mechanisms to remove damaged membrane by internalization (endocytosis), shedding, reorganization of cytoskeleton and membrane fusion events to reseal the membrane. Members of the annexin protein family, which are characterized by their Ca2+-dependent binding to anionic phospholipids, are important regulators of plasma membrane repair. Recent studies based on cellular and biophysical membrane models show that they have more distinct functions in the repair response than previously assumed by regulating membrane curvature and excision of damaged membrane. In cells, plasma membrane injury and flux of Ca2+ ions into the cytoplasm trigger recruitment of annexins including annexin A4 and A6 to the membrane wound edges. Here, they induce curvature and constriction force, which help pull the wound edges together for eventual fusion. Cancer cells are dependent on efficient plasma membrane repair to counteract frequent stress-induced membrane injuries, which opens novel avenues to target cancer cells through their membrane repair system. Here, we discuss mechanisms of single cell wound healing implicating annexin proteins and membrane curvature.


Author(s):  
Christoffer Florentsen ◽  
Alexander Kamp-Sonne ◽  
Guillermo Moreno-Pescador ◽  
Weria Pezeshkian ◽  
Ali Asghar Hakami Zanjani ◽  
...  

AbstractThe plasma membrane of eukaryotic cells consists of a crowded environment comprised of a high diversity of proteins in a complex lipid matrix. The lateral organization of membrane proteins in the plasma membrane (PM) is closely correlated with biological functions such as endocytosis, membrane budding and other processes which involve protein mediated shaping of the membrane into highly curved structures. Annexin A4 (ANXA4) is a prominent player in a number of biological functions including plasma membrane repair. Its binding to membranes is activated by Ca2+ influx and it is therefore rapidly recruited to the cell surface near rupture sites where Ca2+ influx takes place. However, the free edges near rupture sites can easily bend into complex curvatures and hence may accelerate recruitment of curvature sensing proteins to facilitate rapid membrane repair. To analyze the curvature sensing behavior of curvature inducing proteins in crowded membranes, we quantifify the affinity of ANXA4 monomers and trimers for high membrane curvatures by extracting membrane nanotubes from giant plasma membrane vesicles (GPMVs). ANXA4 is found to be a sensor of negative membrane curvatures. Multiscale simulations furthermore predicted that ANXA4 trimers generate membrane curvature upon binding and have an affinity for highly curved membrane regions only within a well defined membrane curvature window. Our results indicate that curvature sensing and mobility of ANXA4 depend on the trimer structure of ANXA4 which could provide new biophysical insight into the role of ANXA4 in membrane repair and other biological processes.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Luana L. Scheffer ◽  
Sen Chandra Sreetama ◽  
Nimisha Sharma ◽  
Sushma Medikayala ◽  
Kristy J. Brown ◽  
...  

Author(s):  
Jing Zou ◽  
Kun Jin ◽  
Tongsheng Chen ◽  
Xinlei Li

Abstract When cells are cultured on the micro- or nano- structure substrate, filamentous pseudopods are formed at specific locations due to the effects of substrate morphology and local membrane curvature, which provides a powerful method to guide cell migration and neurite orientation. However, it is unclear the effects of substrate surface morphology and initial cell membrane on pseudopod formation and growth. Here, we present a quantitative thermodynamic model to investigate the difficulty of pseudopod formation. Based on the established model, we studied the effects of substrate morphology and the curvature of the initial cell membrane on filamentous pseudopods formation by analyzing the magnitude of an average driving force. We find that the pseudopod-substrate adhesion and the larger curvature radius of the initial cell membrane can facilitate filamentous pseudopods formation due to the smaller minimum resistance energy. Furthermore, our theoretical results seem to show a broad agreement with experimental observations, which implies that these studies would provide useful guidance to control the pseudopods formation on substrate for biomedical applications.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaofei Cong ◽  
Nagaraja Nagre ◽  
Jeremy Herrera ◽  
Andrew C. Pearson ◽  
Ian Pepper ◽  
...  

2015 ◽  
Vol 290 (40) ◽  
pp. 24592-24603 ◽  
Author(s):  
Haichang Li ◽  
Pu Duann ◽  
Pei-Hui Lin ◽  
Li Zhao ◽  
Zhaobo Fan ◽  
...  

2013 ◽  
Vol 104 (2) ◽  
pp. 613a
Author(s):  
Kathrin Spendier ◽  
Joshua B. Baptist ◽  
Zbigniew J. Celinski ◽  
Anatoliy V. Glushchenko

2013 ◽  
Vol 10 (86) ◽  
pp. 20130403 ◽  
Author(s):  
David Schley ◽  
Robert J. Whittaker ◽  
Benjamin W. Neuman

Viral replication occurs within cells, with release (and onward infection) primarily achieved through two alternative mechanisms: lysis, in which virions emerge as the infected cell dies and bursts open; or budding, in which virions emerge gradually from a still living cell by appropriating a small part of the cell membrane. Virus budding is a poorly understood process that challenges current models of vesicle formation. Here, a plausible mechanism for arenavirus budding is presented, building on recent evidence that viral proteins embed in the inner lipid layer of the cell membrane. Experimental results confirm that viral protein is associated with increased membrane curvature, whereas a mathematical model is used to show that localized increases in curvature alone are sufficient to generate viral buds. The magnitude of the protein-induced curvature is calculated from the size of the amphipathic region hypothetically removed from the inner membrane as a result of translation, with a change in membrane stiffness estimated from observed differences in virion deformation as a result of protein depletion. Numerical results are based on experimental data and estimates for three arenaviruses, but the mechanisms described are more broadly applicable. The hypothesized mechanism is shown to be sufficient to generate spontaneous budding that matches well both qualitatively and quantitatively with experimental observations.


2017 ◽  
Author(s):  
Terrens N. V. Saaki ◽  
Henrik Strahl ◽  
Leendert W. Hamoen

AbstractChemoreceptors are localized at the cell poles ofEscherichia coliand other rod-shaped bacteria. Over the years different mechanisms have been put forward to explain this polar localization; from stochastic clustering, membrane curvature driven localization, interactions with the Tol-Pal complex, to nucleoid exclusion. To evaluate these mechanisms, we monitored the cellular localization of the aspartate chemoreceptor Tar in different deletion mutants. We did not find any indication for either stochastic cluster formation or nucleoid exclusion. However, the presence of a functional Tol-Pal complex appeared to be essential to retain Tar at cell poles. This finding also implies that the curvature of cell poles does not attract chemoreceptor complexes. Interestingly, Tar still accumulated at midcell intoland inpaldeletion mutants. In these mutants, the protein appears to gather at the base of division septa, a region characterised by strong membrane curvature. Chemoreceptors, like Tar, form trimer-of-dimers that bend the cell membrane due to a rigid tripod structure with an estimated curvature of approximately 37 nm. This curvature approaches the curvature of the cell membrane generated during cell division, and localization of chemoreceptor tripods at curved membrane areas is therefore energetically favourable as it lowers membrane tension. Indeed, when we introduced mutations in Tar that abolish the rigid tripod structure, the protein was no longer able to accumulate at midcell or cell poles. These findings favour a model where chemoreceptor localization inE. coliis driven by strong membrane curvature and association with the Tol-Pal complex.ImportanceBacteria have exquisite mechanisms to sense and to adapt to the environment they live in. One such mechanism involves the chemotaxis signal transduction pathway, in which chemoreceptors specifically bind certain attracting or repelling molecules and transduce the signals to the cell. In different rod-shaped bacteria, these chemoreceptors localize specifically to cell poles. Here, we examined the polar localization of the aspartate chemoreceptor Tar inE. coli, and found that membrane curvature at cell division sites and interaction with the Tal-pol protein complex, localize Tar at cell division sites, the future cell poles. This study shows how membrane curvature can guide localization of proteins in a cell.


Sign in / Sign up

Export Citation Format

Share Document