scholarly journals Death effector domain-containing protein induces vulnerability to cell cycle inhibition in triple-negative breast cancer

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yingjia Ni ◽  
Keon R. Schmidt ◽  
Barnes A. Werner ◽  
Jenna K. Koenig ◽  
Ian H. Guldner ◽  
...  
2021 ◽  
pp. molcanther.0807.2020
Author(s):  
Jessica L. Christenson ◽  
Kathleen I. O'Neill ◽  
Michelle M. Williams ◽  
Nicole S. Spoelstra ◽  
Kenneth L. Jones ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1212
Author(s):  
Getinet M. Adinew ◽  
Equar Taka ◽  
Patricia Mendonca ◽  
Samia S. Messeha ◽  
Karam F. A. Soliman

Triple- negative breast cancer (TNBC) incidence rate has regularly risen over the last decades and is expected to increase in the future. Finding novel treatment options with minimum or no toxicity is of great importance in treating or preventing TNBC. Flavonoids are new attractive molecules that might fulfill this promising therapeutic option. Flavonoids have shown many biological activities, including antioxidant, anti-inflammatory, and anticancer effects. In addition to their anticancer effects by arresting the cell cycle, inducing apoptosis, and suppressing cancer cell proliferation, flavonoids can modulate non-coding microRNAs (miRNAs) function. Several preclinical and epidemiological studies indicate the possible therapeutic potential of these compounds. Flavonoids display a unique ability to change miRNAs’ levels via different mechanisms, either by suppressing oncogenic miRNAs or activating oncosuppressor miRNAs or affecting transcriptional, epigenetic miRNA processing in TNBC. Flavonoids are not only involved in the regulation of miRNA-mediated cancer initiation, growth, proliferation, differentiation, invasion, metastasis, and epithelial-to-mesenchymal transition (EMT), but also control miRNAs-mediated biological processes that significantly impact TNBC, such as cell cycle, immune system, mitochondrial dysregulation, modulating signaling pathways, inflammation, and angiogenesis. In this review, we highlighted the role of miRNAs in TNBC cancer progression and the effect of flavonoids on miRNA regulation, emphasizing their anticipated role in the prevention and treatment of TNBC.


2021 ◽  
Author(s):  
Xu Han ◽  
Xiujuan Qu ◽  
Beixing Liu ◽  
Yizhe Wang ◽  
Yang Cheng ◽  
...  

Abstract Background: Triple negative breast cancer (TNBC) is a tumor characterized by high recurrence and mortality, but without effective targeted therapy. It is urgent to explore new treatment strategy to improve the efficacy of TNBC therapy. Methods: Transcriptomic profiling datasets of TNBC were used for screening TNBC specific gene sets. Drug prediction was performed in Connectivity map (CMap) database. Molecular docking method was used for analyzing drug targets. In vitro and in vivo models of TNBC were constructed to examine the drug efficacy. Results: We screened out Mibefradil, a T-type Ca2+ channel blocker, might be a potential therapeutic drug for TNBC by transcriptomics and bioinformatics analysis, and verified that Mibefradil could inhibit the proliferation of TNBC cells by inducing apoptosis and cell cycle arrest. Furthermore, by network pharmacology and molecular docking analysis, AURKA was predicted as the most possible drug target of Mibefradil. Finally, it was proved that Mibefradil treatment could induce apoptosis by decreasing protein expression and phosphorylation level of AURKA in vitro and in vivo. Conclusions: Mibefradil played anti-cancer role in TNBC cells by targeting to AURKA to induce cell cycle and apoptosis. Our results repurposed Mibefradil as a potential targeted drug of TNBC and provided a fundamental research for a novel strategy TNBC treatment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Qianxue Wu ◽  
Xin Tang ◽  
Wenming Zhu ◽  
Qing Li ◽  
Xiang Zhang ◽  
...  

BackgroundPatients with triple-negative breast cancer (TNBC) have poor overall survival. The present study aimed to investigate the potential prognostics of TNBC by analyzing breast cancer proteomic and transcriptomic datasets.MethodsCandidate proteins selected from CPTAC (the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium) were validated using datasets from METABRIC (Molecular Taxonomy of Breast Cancer International Consortium). Kaplan-Meier analysis and ROC (receiver operating characteristic) curve analysis were performed to explore the prognosis of candidate genes. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis were performed on the suspected candidate genes. Single-cell RNA-seq (scRNA-seq) data from GSE118389 were used to analyze the cell clusters in which OBFC2A (Oligosaccharide-Binding Fold-Containing Protein 2A) was mainly distributed. TIMER (Tumor Immune Estimation Resource) was used to verify the correlation between OBFC2A expression and immune infiltration. Clone formation assays and wound healing assays were used to detect the role of OBFC2A expression on the proliferation, invasion, and migration of breast cancer cells. Flow cytometry was used to analyze the effects of silencing OBFC2A on breast cancer cell cycle and apoptosis.ResultsSix candidate proteins were found to be differentially expressed in non-TNBC and TNBC groups from CPTAC. However, only OBFC2A was identified as an independently poor prognostic gene marker in METABRIC (HR=3.658, 1.881-7.114). And OBFC2A was associated with immune functions in breast cancer. Biological functional experiments showed that OBFC2A might promote the proliferation and migration of breast cancer cells. The inhibition of OBFC2A expression blocked the cell cycle in G1 phase and inhibited the transformation from G1 phase to S phase. Finally, downregulation of OBFC2A also increased the total apoptosis rate of cells.ConclusionOn this basis, OBFC2A may be a potential prognostic biomarker for TNBC.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Fei-Yu Chen ◽  
Zhi-Yang Zhou ◽  
Ke-Jing Zhang ◽  
Jian Pang ◽  
Shou-Man Wang

Abstract Background As an aggressive subtype of breast cancer with a high risk of recurrence, triple-negative breast cancer (TNBC) lacks available treatment targets. LncRNA MIR100HG promotes cell proliferation in TNBC. However, few studies have investigated the molecular mechanism of MIR100HG in TNBC. Thus, additional in-depth investigations are needed to unravel its associated regulatory mechanism. Methods MIR100HG and miR-5590-3p expression in TNBC tissue samples and cell lines was detected by RT-qPCR. Flow cytometry, transwell, wound-healing, CCK8 and colony formation assays were performed to analyse cell apoptosis, cell cycle, invasion, migration and proliferation. The protein expression of orthodenticle homeobox 1 (OTX1) and proteins in the ERK/MAPK signalling pathway were assessed by western blot analysis. Bioinformatics and luciferase assay were performed to predict and validate the interaction between MIR100HG and miR-5590-3p as well as OTX1 and miR-5590-3p. RNA immunoprecipitation (RIP) was used to detect the interaction between MIR100HG and miR-5590-3p. Subcutaneous tumour growth was observed in nude mice. Immunohistochemistry (IHC) analysis was used to assess OTX1 expression in tumour tissues. Results MIR100HG expression was upregulated, whereas that of miR-5590-3p was downregulated in TNBC. MIR100HG was shown to directly interact with miR-5590-3p. Furthermore, MIR100HG knockdown could promote TNBC cell apoptosis and cell cycle arrest in G0/G1 phase while inhibiting migration, invasion and proliferation. Furthermore, miR-5590-3p inhibition showed the opposite results and could reverse the effect of MIR100HG knockdown in TNBC cells. MiR-5590-3p downregulated the ERK/MAPK signalling pathway, suppressed the migration, invasion and proliferation of TNBC cells and promoted their apoptosis and cell cycle arrest in G0/G1 phase by targeting OTX1. In addition, MIR100HG knockdown inhibited OTX1 expression by upregulating miR-5590-3p in vivo, thereby inhibiting tumour growth. Conclusions MIR100HG promotes the progression of TNBC by sponging miR-5590-3p, thereby upregulating OTX1, suggesting a new potential treatment target for TNBC.


2021 ◽  
Vol 12 (9) ◽  
Author(s):  
Hong Luo ◽  
Zhicheng Zhou ◽  
Shan Huang ◽  
Mengru Ma ◽  
Manyu Zhao ◽  
...  

AbstractFailures to treat triple-negative breast cancer (TNBC) are mainly due to chemoresistance or radioresistance. We and others previously discovered that zinc finger E-box-binding homeobox 1 (ZEB1) is a massive driver causing these resistance. However, how to dynamically modulate the intrinsic expression of ZEB1 during cell cycle progression is elusive. Here integrated affinity purification combined with mass spectrometry and TCGA analysis identify a cell cycle-related E3 ubiquitin ligase, checkpoint with forkhead and ring finger domains (CHFR), as a key negative regulator of ZEB1 in TNBC. Functional studies reveal that CHFR associates with and decreases ZEB1 expression in a ubiquitinating-dependent manner and that CHFR represses fatty acid synthase (FASN) expression through ZEB1, leading to significant cell death of TNBC under chemotherapy. Intriguingly, a small-molecule inhibitor of HDAC under clinical trial, Trichostatin A (TSA), increases the expression of CHFR independent of histone acetylation, thereby destabilizes ZEB1 and sensitizes the resistant TNBC cells to conventional chemotherapy. In patients with basal-like breast cancers, CHFR levels significantly correlates with survival. These findings suggest the therapeutic potential for targeting CHFR-ZEB1 signaling in resistant malignant breast cancers.


Sign in / Sign up

Export Citation Format

Share Document