scholarly journals Near-infrared light and tumor microenvironment dual responsive size-switchable nanocapsules for multimodal tumor theranostics

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhiyi Wang ◽  
Yanmin Ju ◽  
Zeeshan Ali ◽  
Hui Yin ◽  
Fugeng Sheng ◽  
...  

Abstract Smart drug delivery systems (SDDSs) for cancer treatment are of considerable interest in the field of theranostics. However, developing SDDSs with early diagnostic capability, enhanced drug delivery and efficient biodegradability still remains a scientific challenge. Herein, we report near-infrared light and tumor microenvironment (TME), dual responsive as well as size-switchable nanocapsules. These nanocapsules are made of a PLGA-polymer matrix coated with Fe/FeO core-shell nanocrystals and co-loaded with chemotherapy drug and photothermal agent. Smartly engineered nanocapsules can not only shrink and decompose into small-sized nanodrugs upon drug release but also can regulate the TME to overproduce reactive oxygen species for enhanced synergistic therapy in tumors. In vivo experiments demonstrate that these nanocapsules can target to tumor sites through fluorescence/magnetic resonance imaging and offer remarkable therapeutic results. Our synthetic strategy provides a platform for next generation smart nanocapsules with enhanced permeability and retention effect, multimodal anticancer theranostics, and biodegradability.

Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 91 ◽  
Author(s):  
Chuan Zhang ◽  
Yuzhuo Wang ◽  
Yue Zhao ◽  
Hou Liu ◽  
Yueqi Zhao ◽  
...  

The chemotherapy of stimuli-responsive drug delivery systems (SDDSs) is a promising method to enhance cancer treatment effects. However, the low efficiency of chemotherapy drugs and poor degradation partly limit the application of SDDSs. Herein, we report doxorubicin (DOX)-loading mixed micelles for biotin-targeting drug delivery and enhanced photothermal/photodynamic therapy (PTT/PDT). Glutathione (GSH)-responsive mixed micelles were prepared by a dialysis method, proportionally mixing polycaprolactone-disulfide bond-biodegradable photoluminescent polymer (PCL-SS-BPLP) and biotin-polyethylene glycol-cypate (biotin-PEG-cypate). Chemically linking cypate into the mixed micelles greatly improved cypate solubility and PTT/PDT effect. The micelles also exhibited good monodispersity and stability in cell medium (~119.7 nm), low critical micelles concentration, good biodegradation, and photodecomposition. The high concentration of GSH in cancer cells and near-infrared light (NIR)-mediated cypate decomposition were able to achieve DOX centralized release. Meanwhile, the DOX-based chemotherapy combined with cypate-based NIR-triggered hyperthermia and reactive oxygen species could synergistically induce HepG2 cell death and apoptosis. The in vivo experiments confirmed that the micelles generated hyperthermia and achieved a desirable therapeutic effect. Therefore, the designed biodegradable micelles are promising safe nanovehicles for antitumor drug delivery and chemo/PTT/PDT combination therapy.


Biomaterials ◽  
2018 ◽  
Vol 179 ◽  
pp. 164-174 ◽  
Author(s):  
Xuzhu Wang ◽  
Jundong Shao ◽  
Mustafa Abd El Raouf ◽  
Hanhan Xie ◽  
Hao Huang ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 4844-4852
Author(s):  
Saji Uthaman ◽  
Shameer Pillarisetti ◽  
Hye Suk Hwang ◽  
Ansuja Pulickal Mathew ◽  
Kang Moo Huh ◽  
...  

2021 ◽  
Author(s):  
Yadan Zheng ◽  
Zhanzhan Zhang ◽  
Qi Liu ◽  
Ying Wang ◽  
Jialei Hao ◽  
...  

Photodynamic therapy has great potential for tumor ablation and the activation of antitumor immune responses. However, its overall therapeutic efficiency is often limited by the immunosuppressive tumor microenvironment. We developed...


Small ◽  
2008 ◽  
Vol 4 (7) ◽  
pp. 1001-1007 ◽  
Author(s):  
Takuro Niidome ◽  
Yasuyuki Akiyama ◽  
Kohei Shimoda ◽  
Takahito Kawano ◽  
Takeshi Mori ◽  
...  

Biosensors ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 174
Author(s):  
Ramzan Ullah ◽  
Karl Doerfer ◽  
Pawjai Khampang ◽  
Faraneh Fathi ◽  
Wenzhou Hong ◽  
...  

Proper ventilation of a patient with an endotracheal tube (ETT) requires proper placement of the ETT. We present a sensitive, noninvasive, operator-free, and cost-effective optical sensor, called Opt-ETT, for the real-time assessment of ETT placement and alerting of the clinical care team should the ETT become displaced. The Opt-ETT uses a side-firing optical fiber, a near-infrared light-emitting diode, two photodetectors with an integrated amplifier, an Arduino board, and a computer loaded with a custom LabVIEW program to monitor the position of the endotracheal tube inside the windpipe. The Opt-ETT generates a visual and audible warning if the tube moves over a distance set by the operator. Displacement prediction is made using a second-order polynomial fit to the voltages measured from each detector. The system is tested on ex vivo porcine tissues, and the accuracy is determined to be better than 1.0 mm. In vivo experiments with a pig are conducted to test the performance and usability of the system.


2020 ◽  
Vol 32 (4) ◽  
pp. 187-193
Author(s):  
Ayşe Dündar ◽  
Mehmet Ertuğrul Çiftçi ◽  
Özlem İşman ◽  
Ali Murat Aktan

Sign in / Sign up

Export Citation Format

Share Document