scholarly journals Superb water splitting activity of the electrocatalyst Fe3Co(PO4)4 designed with computation aid

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Siraj Sultan ◽  
Miran Ha ◽  
Dong Yeon Kim ◽  
Jitendra N. Tiwari ◽  
Chang Woo Myung ◽  
...  

AbstractFor efficient water splitting, it is essential to develop inexpensive and super-efficient electrocatalysts for the oxygen evolution reaction (OER). Herein, we report a phosphate-based electrocatalyst [Fe3Co(PO4)4@reduced-graphene-oxide(rGO)] showing outstanding OER performance (much higher than state-of-the-art Ir/C catalysts), the design of which was aided by first-principles calculations. This electrocatalyst displays low overpotential (237 mV at high current density 100 mA cm−2 in 1 M KOH), high turnover frequency (TOF: 0.54 s−1), high Faradaic efficiency (98%), and long-term durability. Its remarkable performance is ascribed to the optimal free energy for OER at Fe sites and efficient mass/charge transfer. When a Fe3Co(PO4)4@rGO anodic electrode is integrated with a Pt/C cathodic electrode, the electrolyzer requires only 1.45 V to achieve 10 mA cm−2 for whole water splitting in 1 M KOH (1.39 V in 6 M KOH), which is much smaller than commercial Ir-C//Pt-C electrocatalysts. This cost-effective powerful oxygen production material with carbon-supporting substrates offers great promise for water splitting.

1997 ◽  
Vol 17 (03) ◽  
pp. 161-162
Author(s):  
Thomas Hyers

SummaryProblems with unfractionated heparin as an antithrombotic have led to the development of new therapeutic agents. Of these, low molecular weight heparin shows great promise and has led to out-patient therapy of DVT/PE in selected patients. Oral anticoagulants remain the choice for long-term therapy. More cost-effective ways to give oral anticoagulants are needed.


RSC Advances ◽  
2021 ◽  
Vol 11 (42) ◽  
pp. 26432-26443
Author(s):  
Chol-Hyok Ri ◽  
Yun-Sim Kim ◽  
Un-Gi Jong ◽  
Yun-Hyok Kye ◽  
Se-Hun Ryang ◽  
...  

We propose lead-free potassium iodide perovskite solid solutions KBI3 with B-site mixing between Ge/Sn and Mg as potential candidates for photocatalysts based on systematic first-principles calculations.


Author(s):  
Peishen Shang ◽  
Chunxiao Zhang ◽  
Mengshi Zhou ◽  
Chaoyu He ◽  
Tao Ouyang ◽  
...  

Searching for photocatalysts is crucial for the production of renewable hydrogen from water. Two-dimensional (2D) vdW heterojunctions show great potential. Using first- principles calculations within the HSE06 functional, we propose...


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 537
Author(s):  
Tran-Van Phuc ◽  
Jin-Suk Chung ◽  
Seung-Hyun Hur

Pd, Cu, and Zn trimetallic metal-organic framework electrocatalysts (PCZs) based on benzene-1,3,5-tricarboxylic were synthesized using a simple solvothermal synthesis. The as-synthesized PCZ catalysts exhibited as much as 95% faradaic efficiency towards CO, with a high current density, low onset potential, and excellent long-term stability during the electrocatalytic reduction of CO2.


Author(s):  
Kaiming Guo ◽  
Firdoz Shaik ◽  
Jine Yang ◽  
Bin Jiang

Abstract Water splitting is considered as a potential sustainable and green technology for producing mass hydrogen and oxygen. A cost-effective self-supported stable electrocatalyst with excellent electrocatalytic performance in a wide pH range is greatly required for water splitting. This work reports on the synthesis and anchoring of Fe1CoxNiyP nanoparticles on vertically aligned reduced graphene oxide array (VrGO) via electroless plating. The catalytic activity of Fe1CoxNiyP nanoparticles is tuned finely by tailoring the cationic ratio of Co and Ni. Fe1Co2Ni1P/VrGO exhibits the lowest overpotential (58 and 110 mV) at 10 mA cm−2 and lowest tafel slope (31 and 33 mV dec−1) for hydrogen evolution reaction in 1.0 M KOH and 0.5 M H2SO4 respectively. Fe1Co1Ni2P/VrGO exhibits the lowest overpotential (173 mV) at 10 mA cm−2 with lowest tafel slope (47 mV dec-1) for oxygen evolution reaction. The enhanced performance of the electrocatalyst is attributed to improved electrical conductivity, synergistic effects and beneficial electronic states caused by the appropriate atomic ratio of Co and Ni in the bifunctional electrocatalyst. This study helps to explore the effect of variable cationic ratio in the cost-effective ternary iron group metal phosphides electrocatalysts to achieve enhanced electrocatalytic performance for water splitting in a wide pH range.


RSC Advances ◽  
2016 ◽  
Vol 6 (34) ◽  
pp. 28484-28488 ◽  
Author(s):  
Dandan Wang ◽  
DongXue Han ◽  
Lei Liu ◽  
Li Niu

Graphene band gap opening is achieved when integrated with C2N. C2N/graphene heterostructures are promising materials for FETs and water splitting.


2020 ◽  
Vol 8 (34) ◽  
pp. 11980-11987
Author(s):  
Kai Zheng ◽  
Heping Cui ◽  
Houcai Luo ◽  
Jiabing Yu ◽  
Shaogang Wang ◽  
...  

We thoroughly investigated the photocatalytic performance of novel 2D penta-SiAs2 as an efficient photocatalyst based on first-principles calculations.


2021 ◽  
Vol 56 ◽  
pp. 353-364
Author(s):  
Yanxia Ma ◽  
Yumeng Fo ◽  
Miaomiao Wang ◽  
Xixi Liang ◽  
Hao Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document