scholarly journals Genome-wide CRISPR screen identifies ELP5 as a determinant of gemcitabine sensitivity in gallbladder cancer

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Sunwang Xu ◽  
Ming Zhan ◽  
Cen Jiang ◽  
Min He ◽  
Linhua Yang ◽  
...  

AbstractGemcitabine is the first-line treatment for locally advanced and metastatic gallbladder cancer (GBC), but poor gemcitabine response is universal. Here, we utilize a genome-wide CRISPR screen to identify that loss of ELP5 reduces the gemcitabine-induced apoptosis in GBC cells in a P53-dependent manner through the Elongator complex and other uridine 34 (U34) tRNA-modifying enzymes. Mechanistically, loss of ELP5 impairs the integrity and stability of the Elongator complex to abrogate wobble U34 tRNA modification, and directly impedes the wobble U34 modification-dependent translation of hnRNPQ mRNA, a validated P53 internal ribosomal entry site (IRES) trans-acting factor. Downregulated hnRNPQ is unable to drive P53 IRES-dependent translation, but rescuing a U34 modification-independent hnRNPQ mutant could restore P53 translation and gemcitabine sensitivity in ELP5-depleted GBC cells. GBC patients with lower ELP5, hnRNPQ, or P53 expression have poor survival outcomes after gemcitabine chemotherapy. These results indicate that the Elongator/hnRNPQ/P53 axis controls gemcitabine sensitivity in GBC cells.

Cell Reports ◽  
2021 ◽  
Vol 34 (11) ◽  
pp. 108859
Author(s):  
Jessie Kulsuptrakul ◽  
Ruofan Wang ◽  
Nathan L. Meyers ◽  
Melanie Ott ◽  
Andreas S. Puschnik

2016 ◽  
Vol 62 (2) ◽  
pp. 307-313 ◽  
Author(s):  
Sergio Ruiz ◽  
Cristina Mayor-Ruiz ◽  
Vanesa Lafarga ◽  
Matilde Murga ◽  
Maria Vega-Sendino ◽  
...  
Keyword(s):  
A Genome ◽  

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Rowena DeJesus ◽  
Francesca Moretti ◽  
Gregory McAllister ◽  
Zuncai Wang ◽  
Phil Bergman ◽  
...  

SQSTM1 is an adaptor protein that integrates multiple cellular signaling pathways and whose expression is tightly regulated at the transcriptional and post-translational level. Here, we describe a forward genetic screening paradigm exploiting CRISPR-mediated genome editing coupled to a cell selection step by FACS to identify regulators of SQSTM1. Through systematic comparison of pooled libraries, we show that CRISPR is superior to RNAi in identifying known SQSTM1 modulators. A genome-wide CRISPR screen exposed MTOR signalling and the entire macroautophagy machinery as key regulators of SQSTM1 and identified several novel modulators including HNRNPM, SLC39A14, SRRD, PGK1 and the ufmylation cascade. We show that ufmylation regulates SQSTM1 by eliciting a cell type-specific ER stress response which induces SQSTM1 expression and results in its accumulation in the cytosol. This study validates pooled CRISPR screening as a powerful method to map the repertoire of cellular pathways that regulate the fate of an individual target protein.


Haematologica ◽  
2020 ◽  
Author(s):  
Alisa Damnernsawad ◽  
Daniel Bottomly ◽  
Stephen E. Kurtz ◽  
Christopher A. Eide ◽  
Shannon K. McWeeney ◽  
...  

Drug resistance impedes the long-term effect of targeted therapies in acute myeloid leukemia (AML), necessitating the identification of mechanisms underlying resistance. Approximately 25% of AML patients carry FLT3 mutations and develop post-treatment insensitivity to FLT3 inhibitors, including sorafenib. Using a genome-wide CRISPR screen, we identified LZTR1, NF1, TSC1 or TSC2, negative regulators of the MAPK and MTOR pathways, as mediators of sorafenib resistance. Analyses of ex vivo drug sensitivity assays in FLT3-ITD AML patient samples revealed lower expression of LZTR1, NF1, and TSC2 correlated with sorafenib sensitivity. Importantly, MAPK and/or MTOR complex1 (MTORC1) activity were upregulated in AML cells made resistant to several FLT3 inhibitors, including crenolanib, quizartinib, or sorafenib. These cells were sensitive to MEK inhibitors, and the combination of FLT3 and MEK inhibitors showed enhanced efficacy, suggesting its effectiveness in AML patients with FLT3 mutations and those with resistance to FLT3 inhibitors.


2019 ◽  
Vol 33 (2) ◽  
pp. 334-344 ◽  
Author(s):  
Adi Nagler ◽  
David W. Vredevoogd ◽  
Michal Alon ◽  
Phil F. Cheng ◽  
Sophie Trabish ◽  
...  

HemaSphere ◽  
2019 ◽  
Vol 3 (S1) ◽  
pp. 229-230
Author(s):  
M. Costacurta ◽  
S. Hogg ◽  
S. Vervoort ◽  
B. Martin ◽  
R. Johnstone ◽  
...  
Keyword(s):  
A Genome ◽  

PLoS Biology ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. e3001490
Author(s):  
Annika Kratzel ◽  
Jenna N. Kelly ◽  
Philip V’kovski ◽  
Jasmine Portmann ◽  
Yannick Brüggemann ◽  
...  

Over the past 20 years, 3 highly pathogenic human coronaviruses (HCoVs) have emerged—Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and, most recently, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)—demonstrating that coronaviruses (CoVs) pose a serious threat to human health and highlighting the importance of developing effective therapies against them. Similar to other viruses, CoVs are dependent on host factors for their survival and replication. We hypothesized that evolutionarily distinct CoVs may exploit similar host factors and pathways to support their replication cycles. Herein, we conducted 2 independent genome-wide CRISPR/Cas-9 knockout (KO) screens to identify MERS-CoV and HCoV-229E host dependency factors (HDFs) required for HCoV replication in the human Huh7 cell line. Top scoring genes were further validated and assessed in the context of MERS-CoV and HCoV-229E infection as well as SARS-CoV and SARS-CoV-2 infection. Strikingly, we found that several autophagy-related genes, including TMEM41B, MINAR1, and the immunophilin FKBP8, were common host factors required for pan-CoV replication. Importantly, inhibition of the immunophilin protein family with the compounds cyclosporine A, and the nonimmunosuppressive derivative alisporivir, resulted in dose-dependent inhibition of CoV replication in primary human nasal epithelial cell cultures, which recapitulate the natural site of virus replication. Overall, we identified host factors that are crucial for CoV replication and demonstrated that these factors constitute potential targets for therapeutic intervention by clinically approved drugs.


2021 ◽  
Author(s):  
Annika Kratzel ◽  
Jenna N. Kelly ◽  
Yannick Brueggemann ◽  
Jasmine Portmann ◽  
Philip V’kovski ◽  
...  

SummaryOver the past 20 years, the emergence of three highly pathogenic coronaviruses (CoV) – SARS-CoV, MERS-CoV, and most recently SARS-CoV-2 – has shown that CoVs pose a serious risk to human health and highlighted the importance of developing effective therapies against them. Similar to other viruses, CoVs are dependent on host factors for their survival and replication. We hypothesized that evolutionarily distinct CoVs may exploit similar host factors and pathways to support their replication cycle. Here, we conducted two independent genome-wide CRISPR/Cas9 knockout screens to identify pan-CoV host factors required for the replication of both endemic and emerging CoVs, including the novel CoV SARS-CoV-2. Strikingly, we found that several autophagy-related genes, including the immunophilin FKBP8, TMEM41B, and MINAR1, were common host factors required for CoV replication. Importantly, inhibition of the immunophilin family with the compounds Tacrolimus, Cyclosporin A, and the non-immunosuppressive derivative Alisporivir, resulted in dose-dependent inhibition of CoV replication in primary human nasal epithelial cell cultures that resemble the natural site of virus replication. Overall, we identified host factors that are crucial for CoV replication and demonstrate that these factors constitute potential targets for therapeutic intervention by clinically approved drugs.


2020 ◽  
Vol 3 (12) ◽  
pp. e202000770 ◽  
Author(s):  
Linda K Rushworth ◽  
Victoria Harle ◽  
Peter Repiscak ◽  
William Clark ◽  
Robin Shaw ◽  
...  

Docetaxel chemotherapy in metastatic prostate cancer offers only a modest survival benefit because of emerging resistance. To identify candidate therapeutic gene targets, we applied a murine prostate cancer orthograft model that recapitulates clinical invasive prostate cancer in a genome-wide CRISPR/Cas9 screen under docetaxel treatment pressure. We identified 17 candidate genes whose suppression may enhance the efficacy of docetaxel, with transcription elongation factor A–like 1 (Tceal1) as the top candidate. TCEAL1 function is not fully characterised; it may modulate transcription in a promoter dependent fashion. Suppressed TCEAL1 expression in multiple human prostate cancer cell lines enhanced therapeutic response to docetaxel. Based on gene set enrichment analysis from transcriptomic data and flow cytometry, we confirmed that loss of TCEAL1 in combination with docetaxel leads to an altered cell cycle profile compared with docetaxel alone, with increased subG1 cell death and increased polyploidy. Here, we report the first in vivo genome-wide treatment sensitisation CRISPR screen in prostate cancer, and present proof of concept data on TCEAL1 as a candidate for a combinational strategy with the use of docetaxel.


2019 ◽  
Author(s):  
Anthony F. Cordova ◽  
Christopher Ritchie ◽  
Gaelen T. Hess ◽  
Michael C. Bassik ◽  
Lingyin Li

Abstract2’3’-cyclic-GMP-AMP (cGAMP) is a second messenger that activates the antiviral Stimulator of Interferon Genes (STING) pathway. We recently identified a novel role for cGAMP as a soluble, extracellular immunotransmitter that is produced and secreted by cancer cells. Secreted cGAMP is then sensed by host cells, eliciting an antitumoral immune response. Due to the antitumoral effects of cGAMP, other CDN-based STING agonists are currently under investigation in clinical trials for metastatic solid tumors. However, it is unknown how cGAMP and other CDNs cross the cell membrane to activate intracellular STING. Using a genome-wide CRISPR screen we identified SLC19A1 as the first known importer of cGAMP and other CDNs, including the investigational new drug 2′3′-bisphosphosphothioate-cyclic-di-AMP (2′3′-CDAS). These discoveries will provide insight into cGAMP’s role as an immunotransmitter and aid in the development of more targeted CDN-based cancer therapeutics.


Sign in / Sign up

Export Citation Format

Share Document