scholarly journals Sensing of autoinducer-2 by functionally distinct receptors in prokaryotes

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Lei Zhang ◽  
Shuyu Li ◽  
Xiaozhen Liu ◽  
Zhuo Wang ◽  
Mei Jiang ◽  
...  

Abstract Autoinducer-2 (AI-2) is a quorum sensing signal that mediates communication within and between many bacterial species. However, its known receptors (LuxP and LsrB families) are not found in all the bacteria capable of responding to this signaling molecule. Here, we identify a third type of AI-2 receptor, consisting of a dCACHE domain. AI-2 binds to the dCACHE domain of chemoreceptors PctA and TlpQ of Pseudomonas aeruginosa, thus inducing chemotaxis and biofilm formation. Boron-free AI-2 is the preferred ligand for PctA and TlpQ. AI-2 also binds to the dCACHE domains of histidine kinase KinD from Bacillus subtilis and diguanylate cyclase rpHK1S-Z16 from Rhodopseudomonas palustris, enhancing their enzymatic activities. dCACHE domains (especially those belonging to a subfamily that includes the AI-2 receptors identified in the present work) are present in a large number of bacterial and archaeal proteins. Our results support the idea that AI-2 serves as a widely used signaling molecule in the coordination of cell behavior among prokaryotic species.

2010 ◽  
Vol 192 (12) ◽  
pp. 2950-2964 ◽  
Author(s):  
S. L. Kuchma ◽  
A. E. Ballok ◽  
J. H. Merritt ◽  
J. H. Hammond ◽  
W. Lu ◽  
...  

ABSTRACT The intracellular signaling molecule cyclic-di-GMP (c-di-GMP) has been shown to influence surface-associated behaviors of Pseudomonas aeruginosa, including biofilm formation and swarming motility. Previously, we reported a role for the bifA gene in the inverse regulation of biofilm formation and swarming motility. The bifA gene encodes a c-di-GMP-degrading phosphodiesterase (PDE), and the ΔbifA mutant exhibits increased cellular pools of c-di-GMP, forms hyperbiofilms, and is unable to swarm. In this study, we isolated suppressors of the ΔbifA swarming defect. Strains with mutations in the pilY1 gene, but not in the pilin subunit pilA gene, show robust suppression of the swarming defect of the ΔbifA mutant, as well as its hyperbiofilm phenotype. Despite the ability of the pilY1 mutation to suppress all the c-di-GMP-related phenotypes, the global pools of c-di-GMP are not detectably altered in the ΔbifA ΔpilY1 mutant relative to the ΔbifA single mutant. We also show that enhanced expression of the pilY1 gene inhibits swarming motility, and we identify residues in the putative VWA domain of PilY1 that are important for this phenotype. Furthermore, swarming repression by PilY1 specifically requires the diguanylate cyclase (DGC) SadC, and epistasis analysis indicates that PilY1 functions upstream of SadC. Our data indicate that PilY1 participates in multiple surface behaviors of P. aeruginosa, and we propose that PilY1 may act via regulation of SadC DGC activity but independently of altering global c-di-GMP levels.


mBio ◽  
2010 ◽  
Vol 1 (4) ◽  
Author(s):  
Judith H. Merritt ◽  
Dae-Gon Ha ◽  
Kimberly N. Cowles ◽  
Wenyun Lu ◽  
Diana K. Morales ◽  
...  

ABSTRACT The signaling nucleotide cyclic diguanylate (c-di-GMP) regulates the transition between motile and sessile growth in a wide range of bacteria. Understanding how microbes control c-di-GMP metabolism to activate specific pathways is complicated by the apparent multifold redundancy of enzymes that synthesize and degrade this dinucleotide, and several models have been proposed to explain how bacteria coordinate the actions of these many enzymes. Here we report the identification of a diguanylate cyclase (DGC), RoeA, of Pseudomonas aeruginosa that promotes the production of extracellular polysaccharide (EPS) and contributes to biofilm formation, that is, the transition from planktonic to surface-dwelling cells. Our studies reveal that RoeA and the previously described DGC SadC make distinct contributions to biofilm formation, controlling polysaccharide production and flagellar motility, respectively. Measurement of total cellular levels of c-di-GMP in ∆roeA and ∆sadC mutants in two different genetic backgrounds revealed no correlation between levels of c-di-GMP and the observed phenotypic output with regard to swarming motility and EPS production. Our data strongly argue against a model wherein changes in total levels of c-di-GMP can account for the specific surface-related phenotypes of P. aeruginosa. IMPORTANCE A critical question in the study of cyclic diguanylate (c-di-GMP) signaling is how the bacterial cell integrates contributions of multiple c-di-GMP-metabolizing enzymes to mediate its cognate functional outputs. One leading model suggests that the effects of c-di-GMP must, in part, be localized subcellularly. The data presented here show that the phenotypes controlled by two different diguanylate cyclase (DGC) enzymes have discrete outputs despite the same total level of c-di-GMP. These data support and extend the model in which localized c-di-GMP signaling likely contributes to coordination of the action of the multiple proteins involved in the synthesis, degradation, and/or binding of this critical signal.


2020 ◽  
Vol 295 (34) ◽  
pp. 11949-11962 ◽  
Author(s):  
Lindsey S. Marmont ◽  
Gregory B. Whitfield ◽  
Roland Pfoh ◽  
Rohan J. Williams ◽  
Trevor E. Randall ◽  
...  

Pel is a GalNAc-rich bacterial polysaccharide that contributes to the structure and function of Pseudomonas aeruginosa biofilms. The pelABCDEFG operon is highly conserved among diverse bacterial species, and Pel may therefore be a widespread biofilm determinant. Previous annotation of pel gene clusters has helped us identify an additional gene, pelX, that is present adjacent to pelABCDEFG in >100 different bacterial species. The pelX gene is predicted to encode a member of the short-chain dehydrogenase/reductase (SDR) superfamily, but its potential role in Pel-dependent biofilm formation is unknown. Herein, we have used Pseudomonas protegens Pf-5 as a model to elucidate PelX function as Pseudomonas aeruginosa lacks a pelX homologue in its pel gene cluster. We found that P. protegens forms Pel-dependent biofilms; however, despite expression of pelX under these conditions, biofilm formation was unaffected in a ΔpelX strain. This observation led us to identify a pelX paralogue, PFL_5533, which we designate here PgnE, that appears to be functionally redundant to pelX. In line with this, a ΔpelX ΔpgnE double mutant was substantially impaired in its ability to form Pel-dependent biofilms. To understand the molecular basis for this observation, we determined the structure of PelX to 2.1 Å resolution. The structure revealed that PelX resembles UDP-GlcNAc C4-epimerases. Using 1H NMR analysis, we show that PelX catalyzes the epimerization between UDP-GlcNAc and UDP-GalNAc. Our results indicate that Pel-dependent biofilm formation requires a UDP-GlcNAc C4-epimerase that generates the UDP-GalNAc precursors required by the Pel synthase machinery for polymer production.


2020 ◽  
Author(s):  
Soyoung Park ◽  
Jozef Dingemans ◽  
Madison Gowett ◽  
Karin Sauer

<p>In <em>Pseudomonas aeruginosa</em>, the orphan two-component sensor SagS contributes to both, the transition to biofilm formation and to biofilm cells gaining their heightened tolerance to antimicrobials. However, little is known about the identity of the signals or conditions sensed by SagS to induce the switch to the sessile, drug tolerant mode of growth. Using a modified Biolog phenotype assay to screen for compounds that modulate attachment in a SagS-dependent manner, we identified glucose-6-phosphate to enhance attachment in a manner dependent on the glucose-6-phosphate concentration and SagS. The stimulatory effect was not limited to the attachment as glucose-6-phosphate likewise enhanced biofilm formation. We show that exposure to glucose-6-phosphate results in decreased swarming motility but increased cellular c-di-GMP levels in biofilms. Genetic analysis indicated that the diguanylate cyclase NicD is an activator of biofilm formation and is not only required for enhanced biofilm formation in response to glucose-6-phosphate but also interacts with SagS. Our findings indicate glucose-6-phosphate to likely mimic a signal or conditions sensed by SagS to activate its motile-sessile switch function. Additionally, our findings provide new insight into the interfaces between the ligand-mediated TCS signaling pathway and c-di-GMP levels.</p>


Microbiology ◽  
2010 ◽  
Vol 156 (5) ◽  
pp. 1476-1486 ◽  
Author(s):  
Lucy J. Holcombe ◽  
Gordon McAlester ◽  
Carol A. Munro ◽  
Brice Enjalbert ◽  
Alistair J. P. Brown ◽  
...  

Signal-mediated interactions between the human opportunistic pathogens Pseudomonas aeruginosa and Candida albicans affect virulence traits in both organisms. Phenotypic studies revealed that bacterial supernatant from four P. aeruginosa strains strongly reduced the ability of C. albicans to form biofilms on silicone. This was largely a consequence of inhibition of biofilm maturation, a phenomenon also observed with supernatant prepared from non-clinical bacterial species. The effects of supernatant on biofilm formation were not mediated via interference with the yeast–hyphal morphological switch and occurred regardless of the level of homoserine lactone (HSL) produced, indicating that the effect is HSL-independent. A transcriptome analysis to dissect the effects of the P. aeruginosa supernatants on gene expression in the early stages of C. albicans biofilm formation identified 238 genes that exhibited reproducible changes in expression in response to all four supernatants. In particular, there was a strong increase in the expression of genes related to drug or toxin efflux and a decrease in expression of genes associated with adhesion and biofilm formation. Furthermore, expression of YWP1, which encodes a protein known to inhibit biofilm formation, was significantly increased. Biofilm formation is a key aspect of C. albicans infections, therefore the capacity of P. aeruginosa to antagonize this has clear biomedical implications.


2016 ◽  
Vol 83 (4) ◽  
Author(s):  
Ryan K. Fritts ◽  
Breah LaSarre ◽  
Ari M. Stoner ◽  
Amanda L. Posto ◽  
James B. McKinlay

ABSTRACT Bacteria predominantly exist as members of surfaced-attached communities known as biofilms. Many bacterial species initiate biofilms and adhere to each other using cell surface adhesins. This is the case for numerous ecologically diverse Alphaprotebacteria, which use polar exopolysaccharide adhesins for cell-cell adhesion and surface attachment. Here, we show that Rhodopseudomonas palustris, a metabolically versatile member of the alphaproteobacterial order Rhizobiales, contains a functional unipolar polysaccharide (UPP) biosynthesis gene cluster. Deletion of genes predicted to be critical for UPP biosynthesis and export abolished UPP production. We also found that R. palustris uses UPP to mediate biofilm formation across diverse photoheterotrophic growth conditions, wherein light and organic substrates are used to support growth. However, UPP was less important for biofilm formation during photoautotrophy, where light and CO2 support growth, and during aerobic respiration with organic compounds. Expanding our analysis beyond R. palustris, we examined the phylogenetic distribution and genomic organization of UPP gene clusters among Rhizobiales species that inhabit diverse niches. Our analysis suggests that UPP is a conserved ancestral trait of the Rhizobiales but that it has been independently lost multiple times during the evolution of this clade, twice coinciding with adaptation to intracellular lifestyles within animal hosts. IMPORTANCE Bacteria are ubiquitously found as surface-attached communities and cellular aggregates in nature. Here, we address how bacterial adhesion is coordinated in response to diverse environments using two complementary approaches. First, we examined how Rhodopseudomonas palustris, one of the most metabolically versatile organisms ever described, varies its adhesion to surfaces in response to different environmental conditions. We identified critical genes for the production of a unipolar polysaccharide (UPP) and showed that UPP is important for adhesion when light and organic substrates are used for growth. Looking beyond R. palustris, we performed the most comprehensive survey to date on the conservation of UPP biosynthesis genes among a group of closely related bacteria that occupy diverse niches. Our findings suggest that UPP is important for free-living and plant-associated lifestyles but dispensable for animal pathogens. Additionally, we propose guidelines for classifying the adhesins produced by various Alphaprotebacteria, facilitating future functional and comparative studies.


2019 ◽  
Vol 201 (18) ◽  
Author(s):  
Daniel B. Kearns

ABSTRACT The bacterial secondary metabolite cyclic di-GMP is a widespread, cytoplasmic signal that promotes a physiological transition in which motility is inhibited and biofilm formation is activated. A paper published in this issue (A. E. Baker, S. S. Webster, A. Diepold, S. L. Kuchma, E. Bordeleau, et al., J Bacteriol 201:e00741-18, 2019, https://doi.org/10.1128/JB.00741-18) makes an important connection between cyclic di-GMP and flagellar components. They show that stator units, which normally interact with the flagellum to power rotation, can alternatively interact with and activate an enzyme that synthesizes cyclic di-GMP in Pseudomonas aeruginosa. Moreover, the same stator units are also the target of cyclic-di-GMP-dependent inhibition such that the more the stators are inhibited, the more cyclic di-GMP is made. The resulting positive-feedback loop not only inhibits motility but also may initiate and stabilize biofilm formation.


2014 ◽  
Vol 196 (23) ◽  
pp. 4081-4088 ◽  
Author(s):  
J. A. Moscoso ◽  
T. Jaeger ◽  
M. Valentini ◽  
K. Hui ◽  
U. Jenal ◽  
...  

2016 ◽  
Vol 83 (4) ◽  
Author(s):  
Yuan-Yuan Cheng ◽  
Chao Wu ◽  
Jia-Yi Wu ◽  
Hui-Ling Jia ◽  
Ming-Yu Wang ◽  
...  

ABSTRACT Manipulation of biofilm formation in Shewanella is beneficial for application to industrial and environmental biotechnology. BpfA is an adhesin largely responsible for biofilm formation in many Shewanella species. However, the mechanism underlying BpfA production and the resulting biofilm remains vaguely understood. We previously described the finding that BpfA expression is enhanced by DosD, an oxygen-stimulated diguanylate cyclase, under aerobic growth. In the present work, we identify FlrA as a critical transcription regulator of the bpfA operon in Shewanella putrefaciens CN32 by transposon mutagenesis. FlrA acted as a repressor of the operon promoter by binding to two boxes overlapping the −10 and −35 sites recognized by σ70. DosD regulation of the expression of the bpfA operon was mediated by FlrA, and cyclic diguanylic acid (c-di-GMP) abolished FlrA binding to the operon promoter. We also demonstrate that FlhG, an accessory protein for flagellum synthesis, antagonized FlrA repression of the expression of the bpfA operon. Collectively, this work demonstrates that FlrA acts as a central mediator in the signaling pathway from c-di-GMP to BpfA-associated biofilm formation in S. putrefaciens CN32. IMPORTANCE Motility and biofilm are mutually exclusive lifestyles, shifts between which are under the strict regulation of bacteria attempting to adapt to the fluctuation of diverse environmental conditions. The FlrA protein in many bacteria is known to control motility as a master regulator of flagellum synthesis. This work elucidates its effect on biofilm formation by controlling the expression of the adhesin BpfA in S. putrefaciens CN32 in response to c-di-GMP. Therefore, FlrA plays a dual role in controlling motility and biofilm formation in S. putrefaciens CN32. The cooccurrence of flrA, bpfA, and the FlrA box in the promoter region of the bpfA operon in diverse Shewanella strains suggests that bpfA is a common mechanism that controls biofilm formation in this bacterial species.


Sign in / Sign up

Export Citation Format

Share Document