scholarly journals Integrated digital pathology and transcriptome analysis identifies molecular mediators of T-cell exclusion in ovarian cancer

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Mélanie Desbois ◽  
Akshata R. Udyavar ◽  
Lisa Ryner ◽  
Cleopatra Kozlowski ◽  
Yinghui Guan ◽  
...  

Abstract Close proximity between cytotoxic T lymphocytes and tumour cells is required for effective immunotherapy. However, what controls the spatial distribution of T cells in the tumour microenvironment is not well understood. Here we couple digital pathology and transcriptome analysis on a large ovarian tumour cohort and develop a machine learning approach to molecularly classify and characterize tumour-immune phenotypes. Our study identifies two important hallmarks characterizing T cell excluded tumours: 1) loss of antigen presentation on tumour cells and 2) upregulation of TGFβ and activated stroma. Furthermore, we identify TGFβ as an important mediator of T cell exclusion. TGFβ reduces MHC-I expression in ovarian cancer cells in vitro. TGFβ also activates fibroblasts and induces extracellular matrix production as a potential physical barrier to hinder T cell infiltration. Our findings indicate that targeting TGFβ might be a promising strategy to overcome T cell exclusion and improve clinical benefits of cancer immunotherapy.

2019 ◽  
Author(s):  
Melanie Desbois ◽  
Akshata Udyavar ◽  
Lisa Ryner ◽  
Cleopatra Kozlowski ◽  
Yinghui Guan ◽  
...  

2019 ◽  
Author(s):  
Melanie Desbois ◽  
Akshata Udyavar ◽  
Lisa Ryner ◽  
Cleopatra Kozlowski ◽  
Yinghui Guan ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 325
Author(s):  
Carolina Venturoli ◽  
Ilaria Piga ◽  
Matteo Curtarello ◽  
Martina Verza ◽  
Giovanni Esposito ◽  
...  

Pyruvate dehydrogenase kinase 1 (PDK1) blockade triggers are well characterized in vitro metabolic alterations in cancer cells, including reduced glycolysis and increased glucose oxidation. Here, by gene expression profiling and digital pathology-mediated quantification of in situ markers in tumors, we investigated effects of PDK1 silencing on growth, angiogenesis and metabolic features of tumor xenografts formed by highly glycolytic OC316 and OVCAR3 ovarian cancer cells. Notably, at variance with the moderate antiproliferative effects observed in vitro, we found a dramatic negative impact of PDK1 silencing on tumor growth. These findings were associated with reduced angiogenesis and increased necrosis in the OC316 and OVCAR3 tumor models, respectively. Analysis of viable tumor areas uncovered increased proliferation as well as increased apoptosis in PDK1-silenced OVCAR3 tumors. Moreover, RNA profiling disclosed increased glucose catabolic pathways—comprising both oxidative phosphorylation and glycolysis—in PDK1-silenced OVCAR3 tumors, in line with the high mitotic activity detected in the viable rim of these tumors. Altogether, our findings add new evidence in support of a link between tumor metabolism and angiogenesis and remark on the importance of investigating net effects of modulations of metabolic pathways in the context of the tumor microenvironment.


2009 ◽  
Vol 19 (9) ◽  
pp. 1487-1493 ◽  
Author(s):  
Fangxue Chen ◽  
Meng Hou ◽  
Feng Ye ◽  
Weiguo Lv ◽  
Xing Xie

Aims:Precursors of dendritic cells (DCs) are able to differentiate into macrophages induced by some tumor-associated molecules; however, whether peripheral mature DCs could differentiate into macrophages remains unknown. This study was designed to find out whether ovarian cancer cells could induce peripheral mature DCs to differentiate into macrophages.Main Methods:Mature DCs were cultured from monocytes with granulocyte-macrophage colony-stimulating factor and interleukin 4 (IL-4) for 6 days and lipopolysaccharide for another 24 hours and then were cocultured for 48 hours with ovarian cancer ascites or cell-free supernatants of SKOV3 and CAOV3 cell lines. In some experiments, mature DCs were cultured in the absence or presence of IL-10 or leukemia inhibitory factor (LIF) for the same time. In neutralization experiments, neutralizing monoclonal antibodies to IL-10 or LIF were added to the cultures. Cell phenotypes and phagocytosis were analyzed using flow cytometry; allogeneic T-cell proliferation assay was used to examine stimulatory activity of cells.Results and Conclusions:Mature DCs cocultured with ovarian cancer ascites or supernatants of SKOV3 and CAOV3 differentiated into a group of macrophagelike cells that exhibited increased expression of surface marker CD14+CD1a−, decreased expression of CD83, poorer T-cell costimulatory properties, and greater endocytosis of fluorescein isothiocyanate-dextran in vitro. Interleukin 10 but not LIF mediated this differentiation pathway.


2016 ◽  
Vol 36 (5) ◽  
Author(s):  
Ke He ◽  
Hu Qu ◽  
Li-Nan Xu ◽  
Jun Gao ◽  
Fu-Yi Cheng ◽  
...  

To observe the effect of gene expression and tumorigenicity in hybrid cells of human embryonic stem cells (hESCs) and ovarian cancer cells in vitro and in vivo using a mouse model, and to determine its feasibility in reprogramming tumour cells growth and apoptosis, for a potential exploration of the role of hESCs and tumour cells fusion in the management of ovarian cancer. Stable transgenic hESCs (H1) and ovarian cancer cell line OVCAR-3 were established before fusion, and cell fusion system was established to analyse the related indicators. PTEN expression in HO-H1 cells was higher than those in the parental stem cells and lower than those in parental tumour cells; the growth of OV-H1 (RFP+GFP) hybrid cells with double fluorescence expressions were obviously slower than that of human embryonic stem cells and OVCAR-3 ovarian cancer cells. The apoptosis signal of the OV-H1 hybrid cells was significantly higher than that of the hESCs and OVCAR-3 ovarian cancer cells. In vivo results showed that compared with 7 days, 28 days and 35 days after inoculation of OV-H1 hybrid cells; also, apoptotic cell detection indicated that much stronger apoptotic signal was found in OV-H1 hybrid cells inoculated mouse. The hESCs can inhibit the growth of OVCAR-3 cells in vitro by suppressing p53 and PTEN expression to suppress the growth of tumour that may be achieved by inducing apoptosis of OVCAR-3 cells. The change of epigenetics after fusion of ovarian cancer cells and hESCs may become a novel direction for treatment of ovarian cancer.


2019 ◽  
Vol 11 (497) ◽  
pp. eaau7534 ◽  
Author(s):  
Alison Crawford ◽  
Lauric Haber ◽  
Marcus P. Kelly ◽  
Kristin Vazzana ◽  
Lauren Canova ◽  
...  

Advanced ovarian cancer is frequently treated with combination chemotherapy, but high recurrence rates show the need for therapies that can produce durable responses and extend overall survival. Bispecific antibodies that interact with tumor antigens on cancer cells and activating receptors on immune cells offer an innovative immunotherapy approach. Here, we describe a human bispecific antibody (REGN4018) that binds both Mucin 16 (MUC16), a glycoprotein that is highly expressed on ovarian cancer cells, and CD3, thus bridging MUC16-expressing cells with CD3+ T cells. REGN4018 induced T cell activation and killing of MUC16-expressing tumor cells in vitro. Binding and cytotoxicity of REGN4018 in vitro were minimally affected by high concentrations of CA-125, the shed form of MUC16, which is present in patients. In preclinical studies with human ovarian cancer cells and human T cells in immunodeficient mice, REGN4018 potently inhibited growth of intraperitoneal ovarian tumors. Moreover, in a genetically engineered immunocompetent mouse expressing human CD3 and human MUC16 [humanized target (HuT) mice], REGN4018 inhibited growth of murine tumors expressing human MUC16, and combination with an anti–PD-1 antibody enhanced this efficacy. Immuno-PET imaging demonstrated localization of REGN4018 in MUC16-expressing tumors and in T cell–rich organs such as the spleen and lymph nodes. Toxicology studies in cynomolgus monkeys showed minimal and transient increases in serum cytokines and C-reactive protein after REGN4018 administration, with no overt toxicity. Collectively, these data demonstrate potent antitumor activity and good tolerability of REGN4018, supporting clinical evaluation of REGN4018 in patients with MUC16-expressing advanced ovarian cancer.


2017 ◽  
Vol 373 (1737) ◽  
pp. 20170065 ◽  
Author(s):  
Priya Samuel ◽  
Laura Ann Mulcahy ◽  
Fiona Furlong ◽  
Helen O. McCarthy ◽  
Susan Ann Brooks ◽  
...  

Ovarian cancer has a poor overall survival that is partly caused by resistance to drugs such as cisplatin. Resistance can be acquired as a result of changes to the tumour or due to altered interactions within the tumour microenvironment. Extracellular vesicles (EVs), small lipid-bound vesicles that are loaded with macromolecular cargo and released by cells, are emerging as mediators of communication in the tumour microenvironment. We previously showed that EVs mediate the bystander effect, a phenomenon in which stressed cells can communicate with neighbouring naive cells leading to various effects including DNA damage; however, the role of EVs released following cisplatin treatment has not been tested. Here we show that treatment of cells with cisplatin led to the release of EVs that could induce invasion and increased resistance when taken up by bystander cells. This coincided with changes in p38 and JNK signalling, suggesting that these pathways may be involved in mediating the effects. We also show that EV uptake inhibitors could prevent this EV-mediated adaptive response and thus sensitize cells in vitro to the effects of cisplatin. Our results suggest that preventing pro-tumourigenic EV cross-talk during chemotherapy is a potential therapeutic target for improving outcome in ovarian cancer patients. This article is part of the discussion meeting issue ‘Extracellular vesicles and the tumour microenvironment’.


2017 ◽  
Vol 37 (2) ◽  
Author(s):  
Wei Deying ◽  
Geng Feng ◽  
Liang Shumei ◽  
Zhao Hui ◽  
Liu Ming ◽  
...  

The tumour microenvironment is a highly heterogeneous entity that plays crucial roles in cancer progression. As the most prominent stromal cell types, cancer-associated fibroblasts (CAFs) produce a variety of factors into the tumour microenvironment. In the present study, we firstly isolated CAFs from tumour tissues of the patients with ovarian cancer and demonstrated that the hepatocyte growth factor (HGF) was highly expressed in the supernatants of CAFs. CAF-derived HGF or human recombinant HGF promoted cell proliferation in human ovarian cell lines SKOV3 and HO-8910 cells. Western blotting analysis also showed that CAF-derived HGF or recombinant HGF activated c-Met/phosphoinositide 3-kinase (PI3K)/Akt and glucose-regulated protein 78 (GRP78) signalling pathways in ovarian cancer cells, and these effects could be abrogated by anti-HGF and c-Met inhibitor INCB28060. Moreover, HGF in CAF matrix attenuated paclitaxel (PAC)-caused inhibition of cell proliferation and increase in cell apoptosis through activating c-Met/PI3K/Akt and GRP78 pathways in SKOV3 and HO-8910 cells. The results in vitro were further validated in nude mice. These findings suggest that CAF-derived HGF plays crucial roles in cell proliferation and drug resistance in ovarian cancer cells.


2018 ◽  
Author(s):  
F Guo ◽  
Z Yang ◽  
J Xu ◽  
J Sehouli ◽  
AE Albers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document