scholarly journals The genomic loci of specific human tRNA genes exhibit ageing-related DNA hypermethylation

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Richard J. Acton ◽  
Wei Yuan ◽  
Fei Gao ◽  
Yudong Xia ◽  
Emma Bourne ◽  
...  

AbstractThe epigenome has been shown to deteriorate with age, potentially impacting on ageing-related disease. tRNA, while arising from only ˜46 kb (<0.002% genome), is the second most abundant cellular transcript. tRNAs also control metabolic processes known to affect ageing, through core translational and additional regulatory roles. Here, we interrogate the DNA methylation state of the genomic loci of human tRNA. We identify a genomic enrichment for age-related DNA hypermethylation at tRNA loci. Analysis in 4,350 MeDIP-seq peripheral-blood DNA methylomes (16–82 years), identifies 44 and 21 hypermethylating specific tRNAs at study-and genome-wide significance, respectively, contrasting with none hypomethylating. Validation and replication (450k array and independent targeted Bisuphite-sequencing) supported the hypermethylation of this functional unit. Tissue-specificity is a significant driver, although the strongest consistent signals, also independent of major cell-type change, occur in tRNA-iMet-CAT-1-4 and tRNA-Ser-AGA-2-6. This study presents a comprehensive evaluation of the genomic DNA methylation state of human tRNA genes and reveals a discreet hypermethylation with advancing age.

2019 ◽  
Author(s):  
Richard J. Acton ◽  
Wei Yuan ◽  
Fei Gao ◽  
Yudong Xia ◽  
Emma Bourne ◽  
...  

AbstractThe epigenome deteriorates with age, potentially impacting on ageing-related disease.Here, we interrogate the DNA methylation state of the genomic loci of human tRNA. Whilst arising from only ~46kb (<0.002% genome), this information transfer machinery is the second most abundant cellular transcript. tRNAs also control metabolic processes known to affect ageing, through core translational and additional regulatory roles.We identified a genomic enrichment for age-related DNA hypermethylation at tRNA loci. Analysis in 4,350 MeDIP-seq peripheral-blood DNA methylomes (16-82 years), classified 44 and 21 hypermethylating specific tRNAs at study- and genome-wide significance, respectively, contrasting with 0 hypomethylating. Validation and replication (450k array & independent targeted Bisuphite-sequencing) supported thehypermethylation of this functional unit. The strongest consistent signals, also independent of major cell-type change, occur in tRNA-iMet-CAT-1-4 and tRNA-Ser-AGA-2-6.This study is this first comprehensive evaluation of the genomic DNA methylation state of human tRNA genes and reveals a discreet hypermethylation with advancing age.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Jing Shen ◽  
Shuang Wang ◽  
Abby B. Siegel ◽  
Helen Remotti ◽  
Qiao Wang ◽  
...  

Background.Previous studies, including ours, have examined the regulation of microRNAs (miRNAs) by DNA methylation, but whether this regulation occurs at a genome-wide level in hepatocellular carcinoma (HCC) is unclear.Subjects/Methods.Using a two-phase study design, we conducted genome-wide screening for DNA methylation and miRNA expression to explore the potential role of methylation alterations in miRNAs regulation.Results.We found that expressions of 25 miRNAs were statistically significantly different between tumor and nontumor tissues and perfectly differentiated HCC tumor from nontumor. Six miRNAs were overexpressed, and 19 were repressed in tumors. Among 133 miRNAs with inverse correlations between methylation and expression, 8 miRNAs (6%) showed statistically significant differences in expression between tumor and nontumor tissues. Six miRNAs were validated in 56 additional paired HCC tissues, and significant inverse correlations were observed for miR-125b and miR-199a, which is consistent with the inactive chromatin pattern found in HepG2 cells.Conclusion.These data suggest that the expressions of miR-125b and miR-199a are dramatically regulated by DNA hypermethylation that plays a key role in hepatocarcinogenesis.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Ieva Rauluseviciute ◽  
Finn Drabløs ◽  
Morten Beck Rye

Abstract Background Prostate cancer (PCa) has the highest incidence rates of cancers in men in western countries. Unlike several other types of cancer, PCa has few genetic drivers, which has led researchers to look for additional epigenetic and transcriptomic contributors to PCa development and progression. Especially datasets on DNA methylation, the most commonly studied epigenetic marker, have recently been measured and analysed in several PCa patient cohorts. DNA methylation is most commonly associated with downregulation of gene expression. However, positive associations of DNA methylation to gene expression have also been reported, suggesting a more diverse mechanism of epigenetic regulation. Such additional complexity could have important implications for understanding prostate cancer development but has not been studied at a genome-wide scale. Results In this study, we have compared three sets of genome-wide single-site DNA methylation data from 870 PCa and normal tissue samples with multi-cohort gene expression data from 1117 samples, including 532 samples where DNA methylation and gene expression have been measured on the exact same samples. Genes were classified according to their corresponding methylation and expression profiles. A large group of hypermethylated genes was robustly associated with increased gene expression (UPUP group) in all three methylation datasets. These genes demonstrated distinct patterns of correlation between DNA methylation and gene expression compared to the genes showing the canonical negative association between methylation and expression (UPDOWN group). This indicates a more diversified role of DNA methylation in regulating gene expression than previously appreciated. Moreover, UPUP and UPDOWN genes were associated with different compartments — UPUP genes were related to the structures in nucleus, while UPDOWN genes were linked to extracellular features. Conclusion We identified a robust association between hypermethylation and upregulation of gene expression when comparing samples from prostate cancer and normal tissue. These results challenge the classical view where DNA methylation is always associated with suppression of gene expression, which underlines the importance of considering corresponding expression data when assessing the downstream regulatory effect of DNA methylation.


PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0120388 ◽  
Author(s):  
Fu-Hui Xiao ◽  
Yong-Han He ◽  
Qi-Gang Li ◽  
Huan Wu ◽  
Long-Hai Luo ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2367-2367
Author(s):  
Mira Jeong ◽  
Deqiang Sun ◽  
Min Luo ◽  
Aysegul Ergen ◽  
Hongcang Gu ◽  
...  

Abstract Abstract 2367 Hematopoietic stem cell (HSC) Aging is a complex process linked to number of changes in gene expression and functional decline of self-renewal and differentiation potential. While epigenetic changes have been implicated in HSC aging, little direct evidence has been generated. DNA methylation is one of the major underlying mechanisms associated with the regulation of gene expression, but changes in DNA methylation patterns with HSC aging have not been characterized. We hypothesize that revealing the genome-wide DNA methylation and transcriptome signatures will lead to a greater understanding of HSC aging. Here, we report the first genome-scale study of epigenomic dynamics during normal mouse HSC aging. We isolated SP-KSL-CD150+ HSC populations from 4, 12, 24 month-old mouse bone marrow and carried out genome-wide reduced representative bisulfite sequencing (RRBS) and identified aging-associated differentially methylated CpGs. Three biological samples were sequenced from each aging group and we obtained 30–40 million high-quality reads with over 30X total coverage on ∼1.1M CpG sites which gives us adequate statistical power to infer methylation ratios. Bisulfite conversion rate of non-CpG cytosines was >99%. We analyzed a variety of genomic features to find that CpG island promoters, gene bodies, 5'UTRs, and 3'UTRs generally were associated with hypermethylation in aging HSCs. Overall, out of 1,777 differentially methylated CpGs, 92.8% showed age-related hypermethylation and 7.2% showed age-related hypomethylation. Gene ontology analyses have revealed that differentially methylated CpGs were significantly enriched near genes associated with alternative splicing, DNA binding, RNA-binding, transcription regulation, Wnt signaling and pathways in cancer. Most interestingly, over 579 splice variants were detected as candidates for age-related hypermethylation (86%) and hypomethylation (14%) including Dnmt3a, Runx1, Pbx1 and Cdkn2a. To quantify differentially expressed RNA-transcripts across the entire transcriptome, we performed RNA-seq and analyzed exon arrays. The Spearman's correlation between two different methods was good (r=0.80). From exon arrays, we identified 586 genes that were down regulated and 363 gene were up regulated with aging (p<0.001). Most interestingly, overall expression of DNA methyl transferases Dnmt1, Dnmt3a, Dnmt3b were down regulated with aging. We also found that Dnmt3a2, the short isoform of Dnmt3a, which lacks the N-terminal region of Dnmt3a and represents the major isoform in ES cells, is more expressed in young HSC. For the RNA-seq analysis, we focused first on annotated transcripts derived from cloned mRNAs and we found 307 genes were down regulated and 1015 gene were up regulated with aging (p<0.05). Secondly, we sought to identify differentially expressed isoforms and also novel transcribed regions (antisense and novel genes). To characterize the genes showing differential regulation, we analyzed their functional associations and observed that the highest scoring annotation cluster was enriched in genes associated with translation, the immune network and hematopoietic cell lineage. We expect that the results of these experiments will reveal the global effect of DNA methylation on transcript stability and the translational state of target genes. Our findings will lend insight into the molecular mechanisms responsible for the pathologic changes associated with aging in HSCs. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 5 (1) ◽  
pp. e202101228
Author(s):  
Xiaokang Wang ◽  
Wojciech Rosikiewicz ◽  
Yurii Sedkov ◽  
Tanner Martinez ◽  
Baranda S Hansen ◽  
...  

DNA methylation at enhancers and CpG islands usually leads to gene repression, which is counteracted by DNA demethylation through the TET protein family. However, how TET enzymes are recruited and regulated at these genomic loci is not fully understood. Here, we identify TET2, the glycosyltransferase OGT and a previously undescribed proline and serine rich protein, PROSER1 as interactors of UTX, a component of the enhancer-associated MLL3/4 complexes. We find that PROSER1 mediates the interaction between OGT and TET2, thus promoting TET2 O-GlcNAcylation and protein stability. In addition, PROSER1, UTX, TET1/2, and OGT colocalize on many genomic elements genome-wide. Loss of PROSER1 results in lower enrichment of UTX, TET1/2, and OGT at enhancers and CpG islands, with a concomitant increase in DNA methylation and transcriptional down-regulation of associated target genes and increased DNA hypermethylation encroachment at H3K4me1-predisposed CpG islands. Furthermore, we provide evidence that PROSER1 acts as a more general regulator of OGT activity by controlling O-GlcNAcylation of multiple other chromatin signaling pathways. Taken together, this study describes for the first time a regulator of TET2 O-GlcNAcylation and its implications in mediating DNA demethylation at UTX-dependent enhancers and CpG islands and supports an important role for PROSER1 in regulating the function of various chromatin-associated proteins via OGT-mediated O-GlcNAcylation.


Oncotarget ◽  
2017 ◽  
Vol 8 (70) ◽  
pp. 114648-114662 ◽  
Author(s):  
Min-Ae Song ◽  
Theodore M. Brasky ◽  
Daniel Y. Weng ◽  
Joseph P. McElroy ◽  
Catalin Marian ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2189-2189
Author(s):  
Martin F Kaiser ◽  
Alexander Murison ◽  
Charlotte Pawlyn ◽  
Eileen M Boyle ◽  
David C Johnson ◽  
...  

Abstract Introduction Multiple myeloma is a clinically highly heterogeneous disease, which is reflected by both a complex genome and epigenome. Dynamic epigenetic changes are involved at several stages of myeloma biology, such as transformation and disease progression. Our previous genome wide epigenetic analyses identified prognostically relevant DNA hypermethylation at specific tumor suppressor genes (Kaiser MF et al., Blood 2013), indicating that specific epigenetic programming influences clinical behavior. This clinically relevant finding prompted further investigation of the epigenomic structure of myeloma and its interaction with genetic aberrations. Material and Methods Genome wide DNA methylation of CD138-purified myeloma cells from 464 patients enrolled in the NCRI Myeloma XI trial at presentation were analyzed using the high resolution 450k DNA methylation array platform (Illumina). In addition, 4 plasma cell leukemia (PCL) cases (two t(11;14) and two (4;14)) and 7 myeloma cell lines (HMCL) carrying different translocations were analysed. Analyses were performed in R Bioconductor packages after filtering and removal of low quality and non-uniquely mapping probes. Results Variation in genome wide DNA methylation was analyzed using unsupervised hierarchical clustering of the 10,000 most variable probes, which revealed epigenetically defined subgroups of disease. Presence of recurrent IGH translocations was strongly associated with specific epigenetic profiles. All 60 cases with t(4;14) clustered into two highly similar sub-clusters, confirming that overexpression of the H3K36 methyltransferase MMSET in t(4;14) has a defined and specific effect on the myeloma epigenome. Interestingly, HMCLs KMS-11 and LP-1, which carry t(4;14), MM1.S, a t(14;16) cell line with an E1099K MMSET activating mutation as well as two PCLs with t(4;14) all clustered in one sub-clade. The majority (59/85) of t(11;14) cases showed global DNA hypomethylation compared to t(4;14) cases and clustered in one subclade, indicating a epigenetic programming effect associated with CCND1, with a subgroup of t(11;14) cases showing a variable DNA methylation pattern. In addition to translocation-defined subgroups, a small cluster of samples with a distinct epigenetic profile was identified. In total 7 cases with a shared specific DNA methylation pattern (median inter-sample correlation 0.4) were identified. The group was characterized by DNA hypermethylation (4,341 hypermethylated regions vs. 750 hypomethylated regions) in comparison to all other cases. Intersection of regions hypermethylated in this subgroups with ENCODE datasets revealed mapping to poised enhancers and promoters in H1-hESC, indicating functionally relevant epigenetic changes. Gene set enrichment analysis (KEGG) demonstrated enrichment of developmental pathway genes, e.g. Hedgehog signaling (adj p=5x10exp-13), amongst others and all four HOX clusters were differentially methylated in this group. Of note, three of seven cases in this subgroup carried a t(11;14) and all t(11;14) or t(11;14)-like HMCLs clustered closely together with these patient cases, but not with the cluster carrying the majority of t(11;14) myeloma or t(11;14) PCLs. This potentially indicates that t(11;14) HMCL could be derived from a subgroup of patients with specific epigenetic characteristics. Conclusion Our results indicate that the recurrent IGH translocations are fundamentally involved in shaping the myeloma epigenome through either direct upregulation of epigenetic modifiers (e.g. MMSET) or through insufficiently understood mechanisms. However, developmental epigenetic processes seem to independently contribute to the complexity of the epigenome in some cases. This work provides important insights into the spectrum of epigenetic subgroups of myeloma and helps identify subgroups of disease that may benefit from specific epigenetic therapies currently being developed. Disclosures Walker: Onyx Pharmaceuticals: Consultancy, Honoraria.


Blood ◽  
2009 ◽  
Vol 113 (12) ◽  
pp. 2795-2804 ◽  
Author(s):  
Maria E. Figueroa ◽  
Bas J. Wouters ◽  
Lucy Skrabanek ◽  
Jacob Glass ◽  
Yushan Li ◽  
...  

Abstract Acute myeloid leukemia is a heterogeneous disease from the molecular and biologic standpoints, and even patients with a specific gene expression profile may present clinical and molecular heterogeneity. We studied the epigenetic profiles of a cohort of patients who shared a common gene expression profile but differed in that only half of them harbored mutations of the CEBPA locus, whereas the rest presented with silencing of this gene and coexpression of certain T-cell markers. DNA methylation studies revealed that these 2 groups of patients could be readily segregated in an unsupervised fashion based on their DNA methylation profiles alone. Furthermore, CEBPA silencing was associated with the presence of an aberrant DNA hypermethylation signature, which was not present in the CEBPA mutant group. This aberrant hypermethylation occurred more frequently at sites within CpG islands. CEBPA-silenced leukemias also displayed marked hypermethylation compared with normal CD34+ hematopoietic cells, whereas CEBPA mutant cases showed only mild changes in DNA methylation compared with these normal progenitors. Biologically, CEBPA-silenced leukemias presented with a decreased response to myeloid growth factors in vitro.


AGE ◽  
2014 ◽  
Vol 36 (3) ◽  
Author(s):  
Wilma T. Steegenga ◽  
Mark V. Boekschoten ◽  
Carolien Lute ◽  
Guido J. Hooiveld ◽  
Philip J. de Groot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document