scholarly journals Ubiquitous organic molecule-based free-standing nanowires with ultra-high aspect ratios

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Koshi Kamiya ◽  
Kazuto Kayama ◽  
Masaki Nobuoka ◽  
Shugo Sakaguchi ◽  
Tsuneaki Sakurai ◽  
...  

AbstractThe critical dimension of semiconductor devices is approaching the single-nm regime, and a variety of practical devices of this scale are targeted for production. Planar structures of nano-devices are still the center of fabrication techniques, which limit further integration of devices into a chip. Extension into 3D space is a promising strategy for future; however, the surface interaction in 3D nanospace make it hard to integrate nanostructures with ultrahigh aspect ratios. Here we report a unique technique using high-energy charged particles to produce free-standing 1D organic nanostructures with high aspect ratios over 100 and controlled number density. Along the straight trajectory of particles penetrating the films of various sublimable organic molecules, 1D nanowires were formed with approximately 10~15 nm thickness and controlled length. An all-dry process was developed to isolate the nanowires, and planar or coaxial heterojunction structures were built into the nanowires. Electrical and structural functions of the developed standing nanowire arrays were investigated, demonstrating the potential of the present ultrathin organic nanowire systems.

2021 ◽  
Author(s):  
Koshi Kamiya ◽  
Kazuto Kamiya ◽  
Masaki Nobuoka ◽  
Shugo Sakaguchi ◽  
Tsuneaki Sakurai ◽  
...  

Abstract The critical dimension of semiconductor devices is approaching the single-nm regime, and a variety of practical devices of this scale are targeted for production this decade. Planar structures of nano-devices are still the center of fabrication techniques, which limit further integration of devices into a chip. Extension into 3D space is a promising strategy for future device integration; however, the steep increase in the number of surfaces and their interaction in 3D nanospace make it hard to integrate nanostructures with aspect ratios over ~ 10. We report herein a unique technique to produce uniform free-standing 1D nanostructures with extremely high aspect ratios over 100, borrowing from technology developed for cancer radiotherapy with high-energy charged particles. Along the straight trajectory of particles penetrating the condensed phase of a variety of sublimable organic molecules, 1D nanowires were formed with single-nm thickness and perfectly controlled length. An all-dry process was developed to isolate the nanowire plexus, and hetero-junction structures could be facilely built into the nanowires by the new technique. Coaxial extension of nanowires by a chemical process allowed us to freely design the nanowires both in axial and radial directions.


2015 ◽  
Vol 51 (91) ◽  
pp. 16381-16384 ◽  
Author(s):  
Yuelong Xin ◽  
Liya Qi ◽  
Yiwei Zhang ◽  
Zicheng Zuo ◽  
Henghui Zhou ◽  
...  

A novel organic solvent-assisted freeze-drying pathway, which can effectively protect and uniformly distribute active particles, is developed to fabricate a free-standing Li2MnO3·LiNi1/3Co1/3Mn1/3O2 (LR)/rGO electrode on a large scale.


Nanoscale ◽  
2021 ◽  
Author(s):  
Chenxi Gao ◽  
Jiawei Wang ◽  
Yuan Huang ◽  
Zixuan Li ◽  
Jiyan Zhang ◽  
...  

Zinc-ion batteries (ZIBs) have attracted significant attention owing to their high safety, high energy density, and low cost. ZIBs have been studied as a potential energy device for portable and...


2006 ◽  
Vol 48 ◽  
pp. 103-112 ◽  
Author(s):  
Claudio Manfredotti

CVD diamond films have reached in recent years superlative improvements in their “ detector grade “ quality, with a time derivative which was never registered for other similar frontier materials. The basic properties of high quality CVD diamond films make them very interesting for a wide range of radiation detectors : they provide fast signals with very low leakage currents, they are very radiation resistant, they have excellent thermal properties and they can be manufactured as free-standing detectors. The recent availability of single crystal CVD diamond samples of extreme good quality, suitable thickness and surface area has opened new application fields in nuclear detection and dosimetry, such as, for instance, hadron therapy and neutron spectrometry in fusion reactors. At the same time, strip and pixel detectors of unprecedented performances have been successfully realized and exploited in the framework of high energy physics experiments. The paper will review the more recent history of CVD diamond nuclear detectors with respect to material quality, with a particular emphasis on epitaxial single crystals diamond, and the achievements in terms of applications in some different fields.


2012 ◽  
Vol 2012 (1) ◽  
pp. 001137-001142 ◽  
Author(s):  
Ilyas Mohammed

For low power processors, stacking memory on top offers many advantages such as high performance due to memory-processor interface within package, small footprint and standard assembly. Package-on-package (PoP) is preferred method of stacking as it offers two discrete packages that are tested separately and can be sourced independently. However, current PoP interconnect technologies do not efficiently scale to meet the memory bandwidth requirements for new generations of multi-core applications processors. The current interconnect technologies such as stacking with smaller sized solder balls, using solder filled laser drilled vias in the mold cap, or using organic interposers are not practically achieving the high IO requirements, since the aspect ratios of these interconnects are limited. To address the gap in PoP interconnect density, a wire bond based package stacking interconnect technology called Bond Via Array (BVA™) is presented that enables reduced pitch and a higher number of interconnects in the PoP perimeter stacking arrangement. The main technological challenges are identified and the research results explained. The three main challenges were forming free standing wire-bonds, molding the package while exposing the tips of the wire-bonds, and package stacking. The assembly results showed that the wire tips were within the desired positional accuracy and height, and the packages were stacked without any loss of yield. These results indicate that the BVA interconnect technology is promising for the very high density and fine pitch required for upcoming mobile computing systems.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Jing Ning ◽  
Maoyang Xia ◽  
Dong Wang ◽  
Xin Feng ◽  
Hong Zhou ◽  
...  

Abstract Recent developments in the synthesis of graphene-based structures focus on continuous improvement of porous nanostructures, doping of thin films, and mechanisms for the construction of three-dimensional architectures. Herein, we synthesize creeper-like Ni3Si2/NiOOH/graphene nanostructures via low-pressure all-solid melting-reconstruction chemical vapor deposition. In a carbon-rich atmosphere, high-energy atoms bombard the Ni and Si surface, and reduce the free energy in the thermodynamic equilibrium of solid Ni–Si particles, considerably catalyzing the growth of Ni–Si nanocrystals. By controlling the carbon source content, a Ni3Si2 single crystal with high crystallinity and good homogeneity is stably synthesized. Electrochemical measurements indicate that the nanostructures exhibit an ultrahigh specific capacity of 835.3 C g−1 (1193.28 F g−1) at 1 A g−1; when integrated as an all-solid-state supercapacitor, it provides a remarkable energy density as high as 25.9 Wh kg−1 at 750 W kg−1, which can be attributed to the free-standing Ni3Si2/graphene skeleton providing a large specific area and NiOOH inhibits insulation on the electrode surface in an alkaline solution, thereby accelerating the electron exchange rate. The growth of the high-performance composite nanostructure is simple and controllable, enabling the large-scale production and application of microenergy storage devices.


2019 ◽  
Vol 7 (11) ◽  
pp. 6507-6513 ◽  
Author(s):  
Jianjun Song ◽  
Xin Guo ◽  
Jinqiang Zhang ◽  
Yi Chen ◽  
Chaoyue Zhang ◽  
...  

A Ti3C2Tx MXene/rGO hybrid aerogel is applied for the first time as a free-standing polysulfide reservoir to inhibit the shuttle effect and improve the overall performance of Li–S batteries.


Sign in / Sign up

Export Citation Format

Share Document