scholarly journals Selection rules of triboelectric materials for direct-current triboelectric nanogenerator

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhihao Zhao ◽  
Linglin Zhou ◽  
Shaoxin Li ◽  
Di Liu ◽  
Yanhong Li ◽  
...  

AbstractThe rapid development of Internet of Things and artificial intelligence brings increasing attention on the harvesting of distributed energy by using triboelectric nanogenerator (TENG), especially the direct current TENG (DC-TENG). It is essential to select appropriate triboelectric materials for obtaining a high performance TENG. In this work, we provide a set of rules for selecting the triboelectric materials for DC-TENG based on several basic parameters, including surface charge density, friction coefficient, polarization, utilization rate of charges, and stability. On the basis of the selection rules, polyvinyl chloride, used widely in industry rather than in TENG, is selected as the triboelectric layer. Its effective charge density can reach up to ~8.80 mC m−2 in a microstructure-designed DC-TENG, which is a new record for all kinds of TENGs. This work can offer a basic guideline for the triboelectric materials selection and promote the practical applications of DC-TENG.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhihao Zhao ◽  
Yejing Dai ◽  
Di Liu ◽  
Linglin Zhou ◽  
Shaoxin Li ◽  
...  

AbstractAs a new-era of energy harvesting technology, the enhancement of triboelectric charge density of triboelectric nanogenerator (TENG) is always crucial for its large-scale application on Internet of Things (IoTs) and artificial intelligence (AI). Here, a microstructure-designed direct-current TENG (MDC-TENG) with rationally patterned electrode structure is presented to enhance its effective surface charge density by increasing the efficiency of contact electrification. Thus, the MDC-TENG achieves a record high charge density of ~5.4 mC m−2, which is over 2-fold the state-of-art of AC-TENGs and over 10-fold compared to previous DC-TENGs. The MDC-TENG realizes both the miniaturized device and high output performance. Meanwhile, its effective charge density can be further improved as the device size increases. Our work not only provides a miniaturization strategy of TENG for the application in IoTs and AI as energy supply or self-powered sensor, but also presents a paradigm shift for large-scale energy harvesting by TENGs.


Author(s):  
Pengfei Chen ◽  
Jie An ◽  
Renwei Cheng ◽  
Sheng Shu ◽  
Andy Berbille ◽  
...  

Despite great potential of triboelectric nanogenerators (TENGs) as a promising energy harvesting technology, their practical applications are still hindered by their pulsed outputs with high crest factor. Here, through a...


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Binbin Zhang ◽  
Guo Tian ◽  
Da Xiong ◽  
Tao Yang ◽  
Fengjun Chun ◽  
...  

Introducing the conductive intermediate layer into a triboelectric nanogenerator (TENG) has been proved as an efficient way to enhance the surface charge density that is attributed to the enhancement of the dielectric permittivity. However, far too little attention has been paid to the companion percolation, another key element to affect the output. Here, the TENG with MXene-embedded polyvinylidene fluoride (PVDF) composite film is fabricated, and the dependence of the output capability on the MXene loading is investigated experimentally and theoretically. Specifically, the surface charge density mainly depends on the dielectric permittivity at lower MXene loadings, and in contrast, the percolation becomes the degrading factor with the further increase of the conductive loadings. At the balance between the dielectric and percolation properties, the surface charge density of the MXene-modified TENG obtained 350% enhancement compared to that with the pure PVDF. This work shed new light on understanding the dielectric and percolation effect in TENG, which renders a universal strategy for the high-performance triboelectronics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Li Long ◽  
Wenlin Liu ◽  
Zhao Wang ◽  
Wencong He ◽  
Gui Li ◽  
...  

AbstractNon-contact triboelectric nanogenerator (TENG) enabled for both high conversion efficiency and durability is appropriate to harvest random micro energy owing to the advantage of low driving force. However, the low output (<10 μC m−2) of non-contact TENG caused by the drastic charge decay limits its application. Here, we propose a floating self-excited sliding TENG (FSS-TENG) by a self-excited amplification between rotator and stator to achieve self-increased charge density, and the air breakdown model of non-contact TENG is given for a maximum charge density. The charge density up to 71.53 μC m−2 is achieved, 5.46 times as that of the traditional floating TENG. Besides, the high output enables it to continuously power small electronics at 3 m s−1 weak wind. This work provides an effective strategy to address the low output of floating sliding TENG, and can be easily adapted to capture the varied micro mechanical energies anywhere.


Author(s):  
Hussain Attia

<span lang="EN-US">This paper presents a new design of a standalone photovoltaic system which is supplying the required power to a direct current water pump that have difficulty to supply by the utility electricity. The system is controlled by an artificial neural networks (ANN) algorithm with function softening by PI controller that to guarantee the maximum power point tracking (MPPT) working conditions. A parallel connected PV array is designed to supply the required power to the water pump. The proposed design considers Permanent Magnet DC motor (PMDC) of 48 Volts, and 500 Watts as a water pump’s motor, the direct current (DC) pump is adopted to avoid the complexity of the alternating current AC pumping system which includes inverter, power filter, and insulated step up transformer, so the presented design avoids the mentioned AC system components. A feed forward ANN algorithm is adopted in this study to produce the reference voltage for the MPPT functioning of the PV system, Proportional Integral (PI) controller is inserted to soften the MPPT controller performance. System design, MATLAB simulation with results and the results’ analysis all are presented in this paper. The study conclusion confirms the effectiveness of the proposal as a successful system for practical applications. </span>


2020 ◽  
Author(s):  
Zhihao Zhao ◽  
Yejing Dai ◽  
Di Liu ◽  
Linglin Zhou ◽  
Shaoxin Li ◽  
...  

Abstract As a new-era of energy harvesting technology, triboelectric nanogenerator (TENG) has been invented to convert randomly distributed mechanical energy into electric power for Internet of Things (IoTs) and artificial intelligence (AI) applications. Enhancement of the triboelectric charge density is crucial for its large-scale commercialization. Here, a microstructure-designed direct-current TENG (MDC-TENG) with rationally patterned electrode structure is presented to enhance its effective surface charge density by increasing the efficiency of contact electrification, which achieves a record high charge density of ~5.4 mC m-2 (more than 2 times of the best value reported). The MDC-TENG realizes both the miniaturized device and high output performance. Meanwhile, its effective charge density can be further improved as the device size increases. Our work not only provides a miniaturization strategy of TENG for the application in IoTs and AI as energy supply or self-powered sensor, but also presents a paradigm shift of the large-scale energy harvesting by TENGs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bolang Cheng ◽  
Qi Xu ◽  
Yaqin Ding ◽  
Suo Bai ◽  
Xiaofeng Jia ◽  
...  

AbstractUsually, high temperature decreases the output performance of triboelectric nanogenerator because of the dissipation of triboelectric charges through the thermionic emission. Here, a temperature difference triboelectric nanogenerator is designed and fabricated to enhance the electrical output performance in high temperature environment. As the hotter friction layer’s temperature of nanogenerator is 0 K to 145 K higher than the cooler part’s temperature, the output voltage, current, surface charge density and output power are increased 2.7, 2.2, 3.0 and 2.9 times, respectively (from 315 V, 9.1 μA, 19.6 μC m−2, 69 μW to 858 V, 20 μA, 58.8 μC m−2, 206.7 μW). With the further increase of temperature difference from 145 K to 219 K, the surface charge density and output performance gradually decrease. At the optimal temperature difference (145 K), the largest output current density is 443 μA cm−2, which is 26.6% larger than the reported record value (350 μA cm−2).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wonwoo Lee ◽  
Semin Jo ◽  
Kanghyeok Lee ◽  
Hong Soo Park ◽  
Junhyuk Yang ◽  
...  

AbstractMetasurfaces allow the rapid development of compact and flat electromagnetic devices owing to their capability in manipulating the wavefront of electromagnetic waves. Particularly, with respect to the metasurface lenses, wide operational bandwidth and wide incident angle behavior are critically required for practical applications. Herein, a single-layer phase gradient metasurface lens is presented to achieve millimeter-wave focusing at a focal point of 13 mm regardless of the incident angle. The proposed metasurface lens is fabricated by constructing subwavelength-thick (< λ/10) phase elements composed of two metallic layers separated by a single dielectric substrate that exhibits low-Q resonance properties and a wide phase modulation range with satisfactory transmissivity. By controlling the spatial phase distribution, the proposed metasurface lens successfully realises effective wavefront manipulation properties and high-performance electromagnetic-wave-focusing characteristics over a wide operating frequency range from 35 to 40 GHz with incident angle independency up to 30°.


2020 ◽  
Vol 13 (4) ◽  
pp. 1132-1153 ◽  
Author(s):  
Tianpei Zhou ◽  
Nan Zhang ◽  
Changzheng Wu ◽  
Yi Xie

Surface/interface nanoengineering of electrocatalysts and air electrodes will promote the rapid development of high-performance rechargeable Zn–air batteries.


2020 ◽  
Vol 16 ◽  
Author(s):  
Alper Gökbulut

Background: Chromatographic techniques such as TLC basically and, HPLC, GC, HPTLC equipped with various detectors are most frequently used for the qualitative and quantitative examination of herbals. Method: An overview of the recent literature concerning the usage of HPTLC for the analysis of medicinal plants has been reviewed. Results: During the last decade/s, HPTLC, a modern, sophisticated and automatized TLC technique with better and advanced separation efficiency, detection limit, data acquisition and processing, has been used for the analysis of herbal materials and preparations since the rapid development of technology in chromatography world. HPTLC with various detectors is a powerful analytical tool especially for the phytochemical applications such as herbal drug quantification and fingerprint analysis. Conclusion: In this review, a latest perspective has been established and some of the previous studies were summarized for the usage of HPTLC in the analysis of herbal remedies, dietary supplements and nutraceuticals.


Sign in / Sign up

Export Citation Format

Share Document