scholarly journals A highly potent ruthenium(II)-sonosensitizer and sonocatalyst for in vivo sonotherapy

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chao Liang ◽  
Jiaen Xie ◽  
Shuangling Luo ◽  
Can Huang ◽  
Qianling Zhang ◽  
...  

AbstractAs a basic structure of most polypyridinal metal complexes, [Ru(bpy)3]2+, has the advantages of simple structure, facile synthesis and high yield, which has great potential for scientific research and application. However, sonodynamic therapy (SDT) performance of [Ru(bpy)3]2+ has not been investigated so far. SDT can overcome the tissue-penetration and phototoxicity problems compared to photodynamic therapy. Here, we report that [Ru(bpy)3]2+ is a highly potent sonosensitizer and sonocatalyst for sonotherapy in vitro and in vivo. [Ru(bpy)3]2+ can produce singlet oxygen (1O2) and sono-oxidize endogenous 1,4-dihydronicotinamide adenine dinucleotide (NADH) under ultrasound (US) stimulation in cancer cells. Furthermore, [Ru(bpy)3]2+ enables effective destruction of mice tumors, and the therapeutic effect can reach deep tissues over 10 cm under US irradiation. This work paves a way for polypyridinal metal complexes to be applied to the noninvasive precise sonotherapy of cancer.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ballav M. Borah ◽  
Joseph Cacaccio ◽  
Farukh A. Durrani ◽  
Wiam Bshara ◽  
Steven G. Turowski ◽  
...  

AbstractThis article presents the construction of a multimodality platform that can be used for efficient destruction of brain tumor by a combination of photodynamic and sonodynamic therapy. For in vivo studies, U87 patient-derived xenograft tumors were implanted subcutaneously in SCID mice. For the first time, it has been shown that the cell-death mechanism by both treatment modalities follows two different pathways. For example, exposing the U87 cells after 24 h incubation with HPPH [3-(1′-hexyloxy)ethyl-3-devinyl-pyropheophorbide-a) by ultrasound participate in an electron-transfer process with the surrounding biological substrates to form radicals and radical ions (Type I reaction); whereas in photodynamic therapy, the tumor destruction is mainly caused by highly reactive singlet oxygen (Type II reaction). The combination of photodynamic therapy and sonodynamic therapy both in vitro and in vivo have shown an improved cell kill/tumor response, that could be attributed to an additive and/or synergetic effect(s). Our results also indicate that the delivery of the HPPH to tumors can further be enhanced by using cationic polyacrylamide nanoparticles as a delivery vehicle. Exposing the nano-formulation with ultrasound also triggered the release of photosensitizer. The combination of photodynamic therapy and sonodynamic therapy strongly affects tumor vasculature as determined by dynamic contrast enhanced imaging using HSA-Gd(III)DTPA.


2021 ◽  
Vol 22 (15) ◽  
pp. 8106
Author(s):  
Tianming Song ◽  
Yawei Qu ◽  
Zhe Ren ◽  
Shuang Yu ◽  
Mingjian Sun ◽  
...  

Despite the numerous available treatments for cancer, many patients succumb to side effects and reoccurrence. Zinc oxide (ZnO) quantum dots (QDs) are inexpensive inorganic nanomaterials with potential applications in photodynamic therapy. To verify the photoluminescence of ZnO QDs and determine their inhibitory effect on tumors, we synthesized and characterized ZnO QDs modified with polyvinylpyrrolidone. The photoluminescent properties and reactive oxygen species levels of these ZnO/PVP QDs were also measured. Finally, in vitro and in vivo experiments were performed to test their photodynamic therapeutic effects in SW480 cancer cells and female nude mice. Our results indicate that the ZnO QDs had good photoluminescence and exerted an obvious inhibitory effect on SW480 tumor cells. These findings illustrate the potential applications of ZnO QDs in the fields of photoluminescence and photodynamic therapy.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi97-vi97
Author(s):  
Satoshi Suehiro ◽  
Takanori Ohnishi ◽  
Akihiro Inoue ◽  
Daisuke Yamashita ◽  
Masahiro Nishikawa ◽  
...  

Abstract OBJECTIVE High invasiveness of malignant gliomas frequently causes local tumor recurrence. To control such recurrence, novel therapies targeted toward infiltrating glioma cells are required. Here, we examined cytotoxic effects of sonodynamic therapy (SDT) combined with a sonosensitizer, 5-aminolevulinic acid (5-ALA), on malignant gliomas both in vitro and in vivo. METHODS In vitro cytotoxicity of 5-ALA-SDT was evaluated in U87 and U251 glioma cells and in U251Oct-3/4 glioma stemlike cells. Treatment-related apoptosis was analyzed using flow cytometry. Intracellular reactive oxygen species (ROS) were measured and the role of ROS in treatment-related cytotoxicity was examined. Effects of 5-ALA-SDT with high-intensity focused ultrasound (HIFU) on tumor growth, survival of glioma-transplanted mice, and histological features of the mouse brains were investigated. RESULTS The 5-ALA-SDT inhibited cell growth and changed cell morphology. Flow cytometric analysis indicated that 5-ALA-SDT induced apoptotic cell death. The 5-ALA-SDT generated higher ROS than in the control group, and inhibition of ROS generation completely eliminated the cytotoxic effects of 5-ALA-SDT. In the in vivo study, 5-ALA-SDT with HIFU greatly prolonged survival of the tumor-bearing mice compared with that of the control group (p < 0.05). Histologically, 5-ALA-SDT produced mainly necrosis of the tumor tissue in the focus area and induced apoptosis of the tumor cells in the perifocus area around the target of the HIFU-irradiated field. Normal brain tissues around the ultrasonic irradiation field of HIFU remained intact. CONCLUSIONS The 5-ALA-SDT was cytotoxic toward malignant gliomas. Generation of ROS by the SDT was thought to promote apoptosis of glioma cells. The 5-ALA-SDT with HIFU induced tumor necrosis in the focus area and apoptosis in the perifocus area of the HIFU-irradiated field. These results suggest that 5-ALA-SDT with HIFU may present a less invasive and tumor-specific therapy, not only for a tumor mass but also for infiltrating tumor cells in malignant gliomas.


1996 ◽  
Author(s):  
J. J. Schuitmaker ◽  
Jaap A. Van Best ◽  
J. L. van Delft ◽  
J. E. Jannink ◽  
J. A. Oosterhuis ◽  
...  
Keyword(s):  

2009 ◽  
Vol 15 (10) ◽  
pp. 3333-3343 ◽  
Author(s):  
Sanjay Anand ◽  
Golara Honari ◽  
Tayyaba Hasan ◽  
Paul Elson ◽  
Edward V. Maytin

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
G. C. Santin ◽  
D. S. B. Oliveira ◽  
R. Galo ◽  
M. C. Borsatto ◽  
S. A. M. Corona

Background. The aim of this study was to perform a systematic review of the literature on the efficacy of antimicrobial photodynamic therapy (PDTa) on cariogenic dental biofilm.Types of Studies Reviewed. Studiesin vivo,in vitro, andin situwere included. Articles that did not address PDTa, those that did not involve cariogenic biofilm, those that used microorganisms in the plankton phase, and reviews were excluded. Data extraction and quality assessments were performed independently by two raters using a scale.Results. Two hundred forty articles were retrieved; only seventeen of them met the eligibility criteria and were analyzed in the present review. Considerable variability was found regarding the methodologies and application protocols for antimicrobial PDTa. Two articles reported unfavorable results.Practical Implications. The present systematic review does not allow drawing any concrete conclusions regarding the efficacy of antimicrobial PDTa, although this method seems to be a promising option.


2011 ◽  
Vol 15 (03) ◽  
pp. 174-180 ◽  
Author(s):  
Lan Ying Wen ◽  
Su-Mi Bae ◽  
Jin Hwan Do ◽  
Kye-Shin Park ◽  
Woong Shick Ahn

Photodynamic therapy (PDT) is a promising treatment for cancer that has been recently accepted in the clinic. In this study, we examined a biological significance of PDT with a chlorin-based photosensitizer, Photodithazine, on cervical cancer model. When human papillomavirus type 16 (HPV16)- transformed mouse TC-1 cells were exposed to varied doses of Photodithazine with light irradiation (6.25 J/cm2), the significant growth inhibition of TC-1 cells was observed at 0.75 μg/mL of Photodithazine. The damaged cells by Photodithazine/PDT were categorized to be early and late apoptosis, as determined by annexin V staining. Photodithazine was primarily localized at lysosome apparatus within TC-1 cells while it was rapidly accumulated and sustained for initial 3 h in tumor tissue of TC-1 tumor bearing mice after IV injection. The tumor growth inhibition by Photodithazine/PDT with light irradiation (300 J/cm2) was examined after injection of various concentration of Photodithazine in tumor mice system. Our results show that Photodithazine/PDT might have significant advantages in the selective killing of tumor lesions in HPV 16 E6/E7 associated cervical cancer model, both in vitro and in vivo.


2012 ◽  
Author(s):  
João Alves dos Reis Júnior ◽  
Patrícia Nascimento de Assis ◽  
Garde^nia Matos Paraguassú ◽  
Isabele Cardoso Vieira de de Castro ◽  
Renan Ferreira Trindade ◽  
...  

1999 ◽  
Author(s):  
Marcelo Bariatto ◽  
Rogerio Furlan ◽  
Koiti Arakai ◽  
Jorge J. Santiago-Aviles

Abstract Nitric oxide (NO) is known to mediate many beneficial physiology processes, motivating its detection in vivo as well as in vitro. Electrochemical detection provides the required cellular level determination of NO among several other techniques. In this work, electrochemical micro-sensors for both types of detection, in vivo and in vitro, were developed, exploring the silicon planar technology, which presents high yield and reliability and also permits batch fabrication. The developed in vitro sensor features eight detection sites (10 μm × 10 μm microelectrodes), for determination of nitric oxide spatial distribution or multi-species analysis. Different electrochemical methods were applied to provide sensor calibration and chemical reproducibility. For in vivo analysis, the designed structures have a needle shape (40 μm thick) and they were silicon micro-machined by using plasma etching or etch stop techniques. Different configurations were designed and implemented, containing a number of detection microelectrodes that vary from 2 to 10. The amperometric detection of both nitric oxide and nitride (NO2−) — a molecule that causes an interference — were investigated by using the in vitro micro-sensor configuration. The need of a cationic exchanger (Nafion) was demonstrated in order to provide selectivity to NO for low concentrations. Also, the developed sensor has a sensitivity of 500 A/M.cm2 and a detection limit of 10 μM.


Sign in / Sign up

Export Citation Format

Share Document