scholarly journals Hypoxia regulates overall mRNA homeostasis by inducing Met1-linked linear ubiquitination of AGO2 in cancer cells

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hailong Zhang ◽  
Xian Zhao ◽  
Yanmin Guo ◽  
Ran Chen ◽  
Jianfeng He ◽  
...  

AbstractHypoxia is the most prominent feature in human solid tumors and induces activation of hypoxia-inducible factors and their downstream genes to promote cancer progression. However, whether and how hypoxia regulates overall mRNA homeostasis is unclear. Here we show that hypoxia inhibits global-mRNA decay in cancer cells. Mechanistically, hypoxia induces the interaction of AGO2 with LUBAC, the linear ubiquitin chain assembly complex, which co-localizes with miRNA-induced silencing complex and in turn catalyzes AGO2 occurring Met1-linked linear ubiquitination (M1-Ubi). A series of biochemical experiments reveal that M1-Ubi of AGO2 restrains miRNA-mediated gene silencing. Moreover, combination analyses of the AGO2-associated mRNA transcriptome by RIP-Seq and the mRNA transcriptome by RNA-Seq confirm that AGO2 M1-Ubi interferes miRNA-targeted mRNA recruiting to AGO2, and thereby facilitates accumulation of global mRNAs. By this mechanism, short-term hypoxia may protect overall mRNAs and enhances stress tolerance, whereas long-term hypoxia in tumor cells results in seriously changing the entire gene expression profile to drive cell malignant evolution.

Author(s):  
Jinfen Wei ◽  
Zixi Chen ◽  
Meiling Hu ◽  
Ziqing He ◽  
Dawei Jiang ◽  
...  

Hypoxia is a characteristic of tumor microenvironment (TME) and is a major contributor to tumor progression. Yet, subtype identification of tumor-associated non-malignant cells at single-cell resolution and how they influence cancer progression under hypoxia TME remain largely unexplored. Here, we used RNA-seq data of 424,194 single cells from 108 patients to identify the subtypes of cancer cells, stromal cells, and immune cells; to evaluate their hypoxia score; and also to uncover potential interaction signals between these cells in vivo across six cancer types. We identified SPP1+ tumor-associated macrophage (TAM) subpopulation potentially enhanced epithelial–mesenchymal transition (EMT) by interaction with cancer cells through paracrine pattern. We prioritized SPP1 as a TAM-secreted factor to act on cancer cells and found a significant enhanced migration phenotype and invasion ability in A549 lung cancer cells induced by recombinant protein SPP1. Besides, prognostic analysis indicated that a higher expression of SPP1 was found to be related to worse clinical outcome in six cancer types. SPP1 expression was higher in hypoxia-high macrophages based on single-cell data, which was further validated by an in vitro experiment that SPP1 was upregulated in macrophages under hypoxia-cultured compared with normoxic conditions. Additionally, a differential analysis demonstrated that hypoxia potentially influences extracellular matrix remodeling, glycolysis, and interleukin-10 signal activation in various cancer types. Our work illuminates the clearer underlying mechanism in the intricate interaction between different cell subtypes within hypoxia TME and proposes the guidelines for the development of therapeutic targets specifically for patients with high proportion of SPP1+ TAMs in hypoxic lesions.


2021 ◽  
Vol 8 ◽  
Author(s):  
Giscard Lima ◽  
Alexander Kolliari-Turner ◽  
Fernanda Rossell Malinsky ◽  
Fergus M. Guppy ◽  
Renan Paulo Martin ◽  
...  

Introduction: Recombinant human erythropoietin (rHuEPO) administration studies involving transcriptomic approaches have demonstrated a gene expression signature that could aid blood doping detection. However, current anti-doping testing does not involve collecting whole blood into tubes with RNA preservative. This study investigated if whole blood in long-term storage and whole blood left over from standard hematological testing in short-term storage could be used for transcriptomic analysis despite lacking RNA preservation.Methods: Whole blood samples were collected from twelve and fourteen healthy nonathletic males, for long-term and short-term storage experiments. Long-term storage involved whole blood collected into Tempus™ tubes and K2EDTA tubes and subjected to long-term (i.e., ‒80°C) storage and RNA extracted. Short-term storage involved whole blood collected into K2EDTA tubes and stored at 4°C for 6‒48 h and then incubated at room temperature for 1 and 2 h prior to addition of RNA preservative. RNA quantity, purity, and integrity were analyzed in addition to RNA-Seq using the MGI DNBSEQ-G400 on RNA from both the short- and long-term storage studies. Genes presenting a fold change (FC) of >1.1 or < ‒1.1 with p ≤ 0.05 for each comparison were considered differentially expressed. Microarray analysis using the Affymetrix GeneChip® Human Transcriptome 2.0 Array was additionally conducted on RNA from the short-term study with a false discovery ratio (FDR) of ≤0.05 and an FC of >1.1 or < ‒1.1 applied to identify differentially expressed genes.Results: RNA quantity, purity, and integrity from whole blood subjected to short- and long-term storage were sufficient for gene expression analysis. Long-term storage: when comparing blood tubes with and without RNA preservation 4,058 transcripts (6% of coding and non-coding transcripts) were differentially expressed using microarray and 658 genes (3.4% of mapped genes) were differentially expressed using RNA-Seq. Short-term storage: mean RNA integrity and yield were not significantly different at any of the time points. RNA-Seq analysis revealed a very small number of differentially expressed genes (70 or 1.37% of mapped genes) when comparing samples stored between 6 and 48 h without RNA preservative. None of the genes previously identified in rHuEPO administration studies were differently expressed in either long- or short-term storage experiments.Conclusion: RNA quantity, purity, and integrity were not significantly compromised from short- or long-term storage in blood storage tubes lacking RNA stabilization, indicating that transcriptomic analysis could be conducted using anti-doping samples collected or biobanked without RNA preservation.


2007 ◽  
Vol 14 (3) ◽  
pp. 1220-1228 ◽  
Author(s):  
John Michalakis ◽  
Spyros D. Georgatos ◽  
Eelco de Bree ◽  
Hara Polioudaki ◽  
John Romanos ◽  
...  

2020 ◽  
Vol 21 (17) ◽  
pp. 6098
Author(s):  
Dina V. Antonova ◽  
Irina V. Alekseenko ◽  
Anastasiia K. Siniushina ◽  
Alexey I. Kuzmich ◽  
Victor V. Pleshkan

Tumor is a complex system of interactions between cancer cells and other cells of the tumor microenvironment. The cancer-associated fibroblasts (CAFs) of the tumor microenvironment remain in close contact with the cancer cells and play an important role in cancer progression. Genetically, CAFs are more stable than cancer cells, making them an attractive target for genetic modification in gene therapy. However, the efficiency of various promoters for transgene expression in fibroblasts is scarcely studied. We performed a comparative analysis of transgene long-term expression under the control of strong cytomegalovirus promoter (pCMV), constitutive cell promoter of the PCNA gene (pPCNA), and the potentially fibroblast-specific promoter of the IGFBP2 gene (pIGFBP2). In vitro expression of the transgene under the control of pCMV in fibroblasts was decreased soon after transduction, whereas the expression was more stable under the control of pIGFBP2 and pPCNA. The efficiency of transgene expression was higher under pPCNA than that under pIGFBP2. Additionally, in a mouse model, pPCNA provided more stable and increased transgene expression in fibroblasts as compared to that under pCMV. We conclude that PCNA promoter is the most efficient for long-term expression of transgenes in fibroblasts both in vitro and in vivo.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 688
Author(s):  
Adrian Tiron ◽  
Irina Ristescu ◽  
Paula A. Postu ◽  
Crina E. Tiron ◽  
Florin Zugun-Eloae ◽  
...  

Perioperative factors promoting cancer recurrence and metastasis are under scrutiny. While oxygen toxicity is documented in several acute circumstances, its implication in tumor evolution is poorly understood. We investigated hyperoxia long-term effects on cancer progression and some underlying mechanisms using both in vitro and in vivo models of triple negative breast cancer (TNBC). We hypothesized that high oxygen exposure, even of short duration, may have long-term effects on cancer growth. Considering that hyperoxic exposure results in reactive oxygen species (ROS) formation, increased oxidative stress and increased Brain-Derived Neurotrophic Factor (BDNF) expression, BDNF may mediate hyperoxia effects offering cancer cells a survival advantage by increased angiogenesis and epithelial mesenchymal transition (EMT). Human breast epithelial MCF10A, human MDA-MB-231 and murine 4T1 TNBC were investigated in 2D in vitro system. Cells were exposed to normoxia or hyperoxia (40%, 60%, 80% O2) for 6 h. We evaluated ROS levels, cell viability and the expression of BDNF, HIF-1α, VEGF-R2, Vimentin and E-Cadherin by immunofluorescence. The in vivo model consisted of 4T1 inoculation in Balb/c mice and tumor resection 2 weeks after and 6 h exposure to normoxia or hyperoxia (40%, 80% O2). We measured lung metastases and the same molecular markers, immediately and 4 weeks after surgery. The in vitro study showed that short-term hyperoxia exposure (80% O2) of TNBC cells increases ROS, increases BDNF expression and that promotes EMT and angiogenesis. The in vivo data indicates that perioperative hyperoxia enhances metastatic disease and this effect could be BDNF mediated.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Musbau Adewumi Akanji ◽  
Damilare Rotimi ◽  
Oluyomi Stephen Adeyemi

Hypoxia-inducible factors (HIFs) are transcription factors that activate the transcription of genes necessary to circumvent to hypoxic (low oxygen level) environments. In carcinogenesis, HIFs play a critical role. Indeed, HIF-1α has been validated as a promising target for novel cancer therapeutics, even as clinical investigations have linked increased levels of HIF-1α with aggressive cancer progression as well as poor patient prognosis. More so, inhibiting HIF-1 activity restricted cancer progression. Therefore, HIF-1 is a viable target for cancer therapy. This may be expected considering the fact that cancer cells are known to be hypoxic. In order to survive the hypoxic microenvironment, cancer cells activate several biochemical pathways via the HIF-1α. Additionally, cellular and molecular insights have proved prospects of the HIF-1α pathway for the development of novel anticancer treatment strategies. The biochemical importance of hypoxia-inducible factors (HIFs) cannot be overemphasized as carcinogenesis, cancer progression, and HIFs are intricately linked. Therefore, this review highlights the significance of these linkages and also the prospects of HIFs as an alternative source of cancer therapies.


2021 ◽  
Author(s):  
Bohan Chen ◽  
Yiping Ma ◽  
Jinfang Bi ◽  
Wenbin Wang ◽  
Anshun He ◽  
...  

Enhancers regulate multiple genes through higher-order chromatin structure and further affect cancer progression. Epigenetic changes in cancer cells activate several cancer specific enhancers that are silenced in normal cells. These cancer specific enhancers are potential therapeutic targets of cancer. However, functions and regulation network of colorectal cancer specific enhancers are still unknown. Here in this study, we profile colorectal cancer specific enhancers and reveal the regulation network of these enhancers by analysis of HiChIP, Hi-C and RNA-seq data. We propose the regulation network of colorectal cancer specific enhancers plays important role in progression of colorectal cancer.


1996 ◽  
Vol 24 (3) ◽  
pp. 365S-365S ◽  
Author(s):  
RUTH STEPHEN ◽  
DAVID CORCORAN ◽  
PHILIPPA D. DARBRE

Sign in / Sign up

Export Citation Format

Share Document