scholarly journals The transcription factor hepatocyte nuclear factor 4A acts in the intestine to promote white adipose tissue energy storage

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Romain Girard ◽  
Sarah Tremblay ◽  
Christophe Noll ◽  
Stéphanie St-Jean ◽  
Christine Jones ◽  
...  

AbstractThe transcription factor hepatocyte nuclear factor 4 A (HNF4A) controls the metabolic features of several endodermal epithelia. Both HNF4A and HNF4G are redundant in the intestine and it remains unclear whether HNF4A alone controls intestinal lipid metabolism. Here we show that intestinal HNF4A is not required for intestinal lipid metabolism per se, but unexpectedly influences whole-body energy expenditure in diet-induced obesity (DIO). Deletion of intestinal HNF4A caused mice to become DIO-resistant with a preference for fat as an energy substrate and energetic changes in association with white adipose tissue (WAT) beiging. Intestinal HNF4A is crucial for the fat-induced release of glucose-dependent insulinotropic polypeptide (GIP), while the reintroduction of a stabilized GIP analog rescues the DIO resistance phenotype of the mutant mice. Our study provides evidence that intestinal HNF4A plays a non-redundant role in whole-body lipid homeostasis and points to a non-cell-autonomous regulatory circuit for body-fat management.

Author(s):  
Ian Huck ◽  
E. Matthew Morris ◽  
John Thyfault ◽  
Udayan Apte

Hepatocyte Nuclear Factor 4 alpha (HNF4α) is required for hepatocyte differentiation and regulates expression of genes involved in lipid and carbohydrate metabolism including those that control VLDL secretion and gluconeogenesis. Whereas previous studies have focused on specific genes regulated by HNF4α in metabolism, its overall role in whole body energy utilization has not been studied. In this study, we used indirect calorimetry to determine the effect of hepatocyte-specific HNF4α deletion (HNF4α-KO) in mice on whole body energy expenditure (EE) and substrate utilization in fed, fasted, and high fat diet (HFD) conditions. HNF4α-KO had reduced resting EE during fed conditions and higher rates of carbohydrate oxidation with fasting. HNF4α-KO mice exhibited decreased body mass caused by fat mass depletion despite no change in energy intake and evidence of positive energy balance. HNF4α-KO mice were able to upregulate lipid oxidation during HFD suggesting that their metabolic flexibility was intact. However, only hepatocyte specific HNF4α-KO mice exhibited significant reduction in basal metabolic rate and spontaneous activity during HFD. Consistent with previous studies, hepatic gene expression in HNF4α-KO supports decreased gluconeogenesis and decreased VLDL export and hepatic Beta-oxidation in HNF4α-KO livers across all feeding conditions. Together, our data suggest deletion of hepatic HNF4α increases dependence on dietary carbohydrates and endogenous lipids for energy during fed and fasted conditions by inhibiting hepatic gluconeogenesis, hepatic lipid export, and intestinal lipid absorption resulting in decreased whole body energy expenditure. These data clarify the role of hepatic HNF4α on systemic metabolism and energy homeostasis.


2021 ◽  
Vol 22 (6) ◽  
pp. 2854
Author(s):  
Masaki Kobayashi ◽  
Yuichiro Nezu ◽  
Ryoma Tagawa ◽  
Yoshikazu Higami

The mitochondrial unfolded protein response (UPRmt) is a stress response mediated by the expression of genes such as chaperones, proteases, and mitokines to maintain mitochondrial proteostasis. Certain genetically modified mice, which defect mitochondrial proteins specifically in adipocytes, developed atrophy of the white adipose tissue, resisted diet-induced obesity, and had altered whole-body metabolism. UPRmt, which has beneficial functions for living organisms, is termed “mitohormesis”, but its specific characteristics and detailed regulatory mechanism have not been elucidated to date. In this review, we discuss the function of UPRmt in adipose atrophy (lipoatrophy), whole-body metabolism, and lifespan based on the concept of mitohormesis.


2009 ◽  
Vol 20 (3) ◽  
pp. 801-808 ◽  
Author(s):  
Fei Wang ◽  
Qiang Tong

Sirtuin family of proteins possesses NAD-dependent deacetylase and ADP ribosyltransferase activities. They are found to respond to nutrient deprivation and profoundly regulate metabolic functions. We have previously reported that caloric restriction increases the expression of one of the seven mammalian sirtuins, SIRT2, in tissues such as white adipose tissue. Because adipose tissue is a key metabolic organ playing a critical role in whole body energy homeostasis, we went on to explore the function of SIRT2 in adipose tissue. We found short-term food deprivation for 24 h, already induces SIRT2 expression in white and brown adipose tissues. Additionally, cold exposure elevates SIRT2 expression in brown adipose tissue but not in white adipose tissue. Intraperitoneal injection of a β-adrenergic agonist (isoproterenol) enhances SIRT2 expression in white adipose tissue. Retroviral expression of SIRT2 in 3T3-L1 adipocytes promotes lipolysis. SIRT2 inhibits 3T3-L1 adipocyte differentiation in low-glucose (1 g/l) or low-insulin (100 nM) condition. Mechanistically, SIRT2 suppresses adipogenesis by deacetylating FOXO1 to promote FOXO1's binding to PPARγ and subsequent repression on PPARγ transcriptional activity. Overall, our results indicate that SIRT2 responds to nutrient deprivation and energy expenditure to maintain energy homeostasis by promoting lipolysis and inhibiting adipocyte differentiation.


2012 ◽  
Vol 258 (1) ◽  
pp. 32-42 ◽  
Author(s):  
Takashige Kawakami ◽  
Norihide Hanao ◽  
Kaori Nishiyama ◽  
Yoshito Kadota ◽  
Masahisa Inoue ◽  
...  

Author(s):  
Natalie Burchat ◽  
Priyanka Sharma ◽  
Hong Ye ◽  
Sai Santosh Babu Komakula ◽  
Agnieszka Dobrzyn ◽  
...  

Obesity and related metabolic disorders are pressing public health concerns, raising the risk for a multitude of chronic diseases. Obesity is multi-factorial disease, with both diet and lifestyle, as well as genetic and developmental factors leading to alterations in energy balance. In this regard, a novel role for DNA repair glycosylases in modulating risk for obesity has been previously established. Global deletion of either of two different glycosylases with varying substrate specificities, Nei-like endonuclease 1 (NEIL1) or 8-oxoguanine DNA glycosylase-1 (OGG1), both predispose mice to diet-induced obesity (DIO). Conversely, enhanced expression of the human OGG1 gene renders mice resistant to obesity and adiposity. This resistance to DIO is mediated through increases in whole body energy expenditure and increased respiration in adipose tissue. Here, we report that hOGG1 expression also confers resistance to genetically-induced obesity. While Agouti obese (Ay/a) mice are hyperphagic and consequently develop obesity on a chow diet, hOGG1 expression in Ay/a mice (Ay/aTg) prevents increased body weight, without reducing food intake. Instead, obesity resistance in Ay/aTg mice is accompanied by increased whole body energy expenditure and tissue mitochondrial content. We also report for the first time that OGG1-mediated obesity resistance in both the Ay/a model and DIO model requires maternal transmission of the hOGG1 transgene. Maternal, but not paternal, transmission of the hOGG1 transgene is associated with obesity resistance and increased mitochondrial content in adipose tissue. These data demonstrate a critical role for OGG1 in modulating energy balance through changes in adipose tissue function. They also demonstrate the importance of OGG1 in modulating developmental programming of mitochondrial content and quality, thereby determining metabolic outcomes in offspring.


2011 ◽  
Vol 300 (6) ◽  
pp. E1146-E1157 ◽  
Author(s):  
Christelle Veyrat-Durebex ◽  
Anne-Laure Poher ◽  
Aurélie Caillon ◽  
Xavier Montet ◽  
Françoise Rohner-Jeanrenaud

Recent studies describe the Lou/C rat as a model of resistance to age- and diet-induced obesity and suggest a preferential channeling of nutrients toward utilization rather than storage under standard feeding conditions. The purpose of the present study was to evaluate lipid metabolism of Lou/C and Wistar rats under a high-fat (HF) diet. Four-month-old male Lou/C and Wistar animals were submitted to a 40% HF diet for 5–9 wk. Evolution of food intake, body weight, and body composition, hormonal parameters, and expression of key transcription factors and enzymes involved in lipid metabolism were determined. Wistar rats developed obesity after 5 wk of HF diet, as previously described. Among the various parameters measured, accumulation of intraperitoneal fat was particularly evident in HF-fed Wistar rats. In these animals, thermogenesis was, however, stimulated as a likely compensatory mechanism against the development of obesity. On the contrary, Lou/C animals failed to develop obesity under such a diet, and intraperitoneal fat, not including epididymal and retroperitoneal fat depots, was virtually absent. Enzyme measurements confirmed lipid utilization rather than storage, which was accompanied by the striking emergence of uncoupling protein-1, characteristic of brown adipocytes, in white adipose tissue, particularly in the subcutaneous depot.


2018 ◽  
Author(s):  
Ian Huck ◽  
E. Matthew Morris ◽  
John Thyfault ◽  
Udayan Apte

AbstractHepatocyte Nuclear Factor 4 alpha (HNF4α) is required for hepatocyte differentiation and regulates expression of genes involved in lipid and carbohydrate metabolism including those that control VLDL secretion and gluconeogenesis. Whereas previous studies have focused on specific genes regulated by HNF4α in metabolism, its overall role in whole body energy utilization has not been studied. In this study, we used indirect calorimetry to determine the effect of hepatocyte-specific HNF4α deletion (HNF4α-KO) in mice on whole body energy expenditure (EE) and substrate utilization in fed, fasted, and high fat diet (HFD) conditions. HNF4α-KO had reduced resting EE during fed conditions and higher rates of carbohydrate oxidation with fasting. HNF4α-KO mice exhibited decreased body mass caused by fat mass depletion despite no change in energy intake and evidence of positive energy balance. HNF4α-KO mice were able to upregulate lipid oxidation during HFD suggesting that their metabolic flexibility was intact. However, only hepatocyte specific HNF4α-KO mice exhibited significant reduction in basal metabolic rate and spontaneous activity during HFD. Consistent with previous studies, hepatic gene expression in HNF4α-KO supports decreased gluconeogenesis and decreased VLDL export and hepatic β-oxidation in HNF4α-KO livers across all feeding conditions. Together, our data suggest deletion of hepatic HNF4α increases dependence on dietary carbohydrates and endogenous lipids for energy during fed and fasted conditions by inhibiting hepatic gluconeogenesis, hepatic lipid export, and intestinal lipid absorption resulting in decreased whole body energy expenditure. These data clarify the role of hepatic HNF4α on systemic metabolism and energy homeostasis.


Adipocyte ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 587-599
Author(s):  
Ulrika Axling ◽  
Michele Cavalera ◽  
Eva Degerman ◽  
Mats Gåfvels ◽  
Gösta Eggertsen ◽  
...  

Diabetes ◽  
1998 ◽  
Vol 47 (8) ◽  
pp. 1231-1235 ◽  
Author(s):  
K. Yamagata ◽  
Q. Yang ◽  
K. Yamamoto ◽  
H. Iwahashi ◽  
J. Miyagawa ◽  
...  

2021 ◽  
pp. 1-24
Author(s):  
L. Irasema Chávaro-Ortiz ◽  
Brenda D. Tapia-Vargas ◽  
Mariel Rico-Hidalgo ◽  
Ruth Gutiérrez-Aguilar ◽  
María E. Frigolet

Abstract Obesity is defined as increased adiposity, which leads to metabolic disease. The growth of adipose tissue depends on its capacity to expand, through hyperplasia or hypertrophy, in order to buffer energy surplus. Also, during the establishment of obesity, adipose tissue expansion reflects adipose lipid metabolism (lipogenesis and/or lipolysis). It is well known that dietary factors can modify lipid metabolism promoting or preventing the development of metabolic abnormalities that concur with obesity. Trans-palmitoleic acid (TP), a biomarker of dairy consumption, has been associated with reduced adiposity in clinical studies. Thus, we aimed to evaluate the effect of TP over adiposity and lipid metabolism-related genes in a rodent model of diet-induced obesity (DIO). To fulfil this aim, we fed C57BL/6 mice with a Control or a High Fat diet, added with or without TP (3g/kg diet), during 11 weeks. Body weight and food intake were monitored, fat pads were weighted, histology of visceral adipose tissue was analysed, and lipid metabolism-related gene expression was explored by qPCR. Results show that TP consumption prevented weight gain induced by high fat diet, reduced visceral adipose tissue weight, and adipocyte size, while increasing the expression of lipolytic molecules. In conclusion, we show for the first time that TP influences adipose tissue metabolism, specifically lipolysis, resulting in decreased adiposity and reduced adipocyte size in a DIO mice model.


Sign in / Sign up

Export Citation Format

Share Document