scholarly journals MicroRNA-200c restoration reveals a cytokine profile to enhance M1 macrophage polarization in breast cancer

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Michelle M. Williams ◽  
Jessica L. Christenson ◽  
Kathleen I. O’Neill ◽  
Sabrina A. Hafeez ◽  
Claire L. Ihle ◽  
...  

AbstractMany immune suppressive mechanisms utilized by triple negative breast cancer (TNBC) are regulated by oncogenic epithelial-to-mesenchymal transition (EMT). How TNBC EMT impacts innate immune cells is not fully understood. To determine how TNBC suppresses antitumor macrophages, we used microRNA-200c (miR-200c), a powerful repressor of EMT, to drive mesenchymal-like mouse mammary carcinoma and human TNBC cells toward a more epithelial state. MiR-200c restoration significantly decreased growth of mouse mammary carcinoma Met-1 cells in culture and in vivo. Cytokine profiling of Met-1 and human BT549 cells revealed that miR-200c upregulated cytokines, such as granulocyte-macrophage colony-stimulating factor (GM-CSF), promoted M1 antitumor macrophage polarization. Cytokines upregulated by miR-200c correlated with an epithelial gene signature and M1 macrophage polarization in BC patients and predicted a more favorable overall survival for TNBC patients. Our findings demonstrate that immunogenic cytokines (e.g., GM-CSF) are suppressed in aggressive TNBC, warranting further investigation of cytokine-based therapies to limit disease recurrence.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A779-A779
Author(s):  
Michelle Williams ◽  
Jessica Christenson ◽  
Kathleen O’Neill ◽  
Sabrina Hafeez ◽  
Nicole Spoelstra ◽  
...  

BackgroundTo identify novel molecular mechanisms used by triple negative breast cancer (TNBC) to facilitate metastasis, we manipulated oncogenic epithelial-to-mesenchymal transition (EMT) by restoring the microRNA-200c (miR-200c), termed ‘the guardian of the epithelial phenotype.’ We identified several tumor cell catabolizing enzymes, including tryptophan 2,3-dioxygenase (TDO2) and heme oxygenase-1 (HO-1). The Richer lab has published that TDO2 promotes anchorage independent cell survival during TNBC metastasis via its catabolite kynurenine, which also induces CD8+ T cell death. Similarly, published studies have demonstrated that HO-1 supports BC anchorage independent survival. However, effects of the HO-1 catabolite bilirubin on the tumor microenvironment had not been studied. We postulated that TNBC utilize targetable catabolizing enzymes, like HO-1, to simultaneously support tumor cell survival and dampen the anti-tumor immune response.MethodsTo test our hypothesis in an immune competent mouse model, Met-1 mammary carcinoma cells from a late stage MMTV-PyMT tumor were engineered to inducibly express miR-200c. Tumor cell infiltrates were analyzed by immunohistochemistry (IHC), flow cytometry and multispectral fluorescence. RAW264.7 mouse macrophages were cultured with conditioned medium from carcinoma cells ± miR-200c or the HO-1 competitive inhibitor tin mesoporphyrin (SnMP). RAW264.7 macrophages were also treated with 0–20 µM bilirubin and macrophage polarization and efferocytic capacity, the ability to engulf dead tumor cells, were assessed using qRT-PCR and IncuCyte assays.ResultsMiR-200c restoration to Met-1 orthotopic tumors decreased growth by 45% and increased infiltration of CD11c+ dendritic cells and activation, determined by CD44 expression, of CD4+ and CD8+ T cells. While the number of F4/80+ macrophages was unchanged by miR-200c, the percent of M1 anti-tumor macrophages (F4/80+iNOS+/total cells) increased by >6-fold in miR-200c+tumors. RAW264.7 macrophages cultured with conditioned medium from miR-200c-restored mammary carcinoma cells had a 25–95% decrease in M2 pro-tumor genes (Arg1, Il4 and Il13) and a 15–55% increase in M1 genes (Nos2, Tnfa and Cxcl10). A similar decrease in M2 (30–50%) and increase M1 (35–160%) genes was seen in macrophages cultured with conditioned medium from SnMP treated mammary carcinoma cells. Conversely, bilirubin treatment alone enhanced M2 macrophage polarization and inhibited efferocytosis in a dose-dependent manner.ConclusionsUse of miR-200c to reverse EMT revealed that HO-1 promotes simultaneous TNBC cell survival and immune suppression. These studies are the first to show that tumor cell-HO-1 activity and subsequent bilirubin production may alter macrophage function in the tumor microenvironment. This finding could be clinically relevant since HO-1 inhibitors like SnMP are already FDA approved for treatment of other diseases.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Wanqin Wang ◽  
Jun Zhao ◽  
Xiaoxia Wen ◽  
Curtis Chun-Jen Lin ◽  
Junjie Li ◽  
...  

AXL receptor tyrosine kinase is overexpressed in a number of solid tumor types including triple-negative breast cancer (TNBC). AXL is considered an important regulator of epithelial-to-mesenchymal transition (EMT) and a potential therapeutic target for TNBC. In this work, we used microPET/CT with 64Cu-labeled anti-human AXL antibody (64Cu-anti-hAXL) to noninvasively interrogate the degradation of AXL in vivo in response to 17-allylamino-17-demethoxygeldanamycin (17-AAG), a potent inhibitor of HSP90. 17-AAG treatment caused significant decline in AXL expression in orthotopic TNBC MDA-MB-231 tumors, inhibited EMT, and delayed tumor growth in vivo, resulting in significant reduction in tumor uptake of 64Cu-anti-hAXL as clearly visualized by microPET/CT. Our data indicate that 64Cu-anti-hAXL can be useful for monitoring anti-AXL therapies and for assessing inhibition of HSP90 molecular chaperone using AXL as a molecular surrogate.


2020 ◽  
Author(s):  
Monish Ram Makena ◽  
Myungjun Ko ◽  
Donna Kimberly Dang ◽  
Rajini Rao

AbstractThe secretory pathway Ca2+-ATPase SPCA2 is a tumor suppressor in triple receptor negative breast cancer (TNBC), a highly aggressive molecular subtype that lacks tailored treatment options. Low expression of SPCA2 in TNBC confers poor survival prognosis in patients. Previous work has established that re-introducing SPCA2 to TNBC cells restores basal Ca2+ signaling, represses mesenchymal gene expression, mitigates tumor migration in vitro and metastasis in vivo. In this study, we examined the effect of histone deacetylase inhibitors (HDACi) in TNBC cell lines. We show that the pan-HDACi vorinostat and the class I HDACi romidepsin induce dose-dependent upregulation of SPCA2 transcript with concurrent downregulation of mesenchymal markers and tumor cell migration characteristic of epithelial phenotype. Silencing SPCA2 abolished the ability of HDACi to reverse epithelial to mesenchymal transition (EMT). Independent of ATPase activity, SPCA2 elevated resting Ca2+ levels to activate downstream components of non-canonical Wnt/Ca2+ signaling. HDACi treatment led to SPCA2-dependent phosphorylation of CAMKII and β-catenin, turning Wnt signaling off. We conclude that SPCA2 mediates the efficacy of HDACi in reversing EMT in TNBC by a novel mode of non-canonical Wnt/Ca2+ signaling. Our findings provide incentive for screening epigenetic modulators that exploit Ca2+ signaling pathways to reverse EMT in breast tumors.Simple SummaryThe triple receptor negative breast cancer subtype, or TNBC, currently has no tailored treatment options. TNBC is highly metastatic, associated with high patient mortality, and disproportionately occurs in Black/African American women where it contributes to racial disparities in health outcomes. Therefore, we focused on new therapeutic approaches to TNBC. We discovered that levels of the Calcium-ATPase SPCA2 are abnormally low in TNBC and that these low levels correlate with poor survival prognosis in patients. Previously, we showed that recombinant SPCA2 prevented TNBC cells from acquiring aggressive ‘mesenchymal’ properties associated with metastasis both in vitro and in vivo. These findings motivated us to search for drugs that turn the SPCA2 gene back on in TNBC cells. In this study, we show that histone deacetylase inhibitors increase SPCA2 levels, activate Ca2+ signaling and convert cancer cells to a less aggressive ‘epithelial’ state. These findings could lead to new treatment options for TNBC.Graphical Abstract


2009 ◽  
Vol 69 (7) ◽  
pp. 2887-2895 ◽  
Author(s):  
Marta Santisteban ◽  
Jennifer M. Reiman ◽  
Michael K. Asiedu ◽  
Marshall D. Behrens ◽  
Aziza Nassar ◽  
...  

Planta Medica ◽  
2016 ◽  
Vol 82 (16) ◽  
pp. 1416-1424 ◽  
Author(s):  
Pavel Tomšík ◽  
Stanislav Mičuda ◽  
Darina Muthná ◽  
Eva Čermáková ◽  
Radim Havelek ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Ying Zhang ◽  
Yi Sun ◽  
Lin Ding ◽  
Wenjing Shi ◽  
Keshuo Ding ◽  
...  

Breast cancer remains the leading cause of female cancer-related mortalities worldwide. Long non-coding RNAs (LncRNAs) have been increasingly reported to play pivotal roles in tumorigenesis and cancer progression. Herein, we focused on LINC00467, which has never been studied in breast cancer. Silence of LINC00467 suppressed proliferation, migration, invasion and epithelial-to-mesenchymal transition (EMT) of breast cancer cells in vitro, whereas forced expression of LINC00467 exhibited the opposite effects. Furthermore, we demonstrated overexpression of LINC00467 promoted tumor growth, while knockdown of LINC00467 inhibited pulmonary metastasis in vivo. Mechanistically, LINC00467 down-regulated miR-138-5p by acting as a miRNA “sponge”. Besides, LINC00467 also up-regulated the protein level of lin-28 homolog B (LIN28B) via a direct interaction. A higher expression level of LINC00467 was observed in breast cancer tissues as compared to the adjacent normal counterparts and elevated LINC00467 predicted poor overall survival. Our findings suggest LINC00467 promotes progression of breast cancer through interacting with miR-138-5p and LIN28B directly. LINC00467 may serve as a potential candidate for the diagnosis and treatment of breast cancer.


2015 ◽  
Vol 35 (23) ◽  
pp. 4069-4082 ◽  
Author(s):  
Juan Li ◽  
Dominique Davidson ◽  
Cleiton Martins Souza ◽  
Ming-Chao Zhong ◽  
Ning Wu ◽  
...  

PTPN12 is a cytoplasmic protein tyrosine phosphatase (PTP) reported to be a tumor suppressor in breast cancer, through its capacity to dephosphorylate oncogenic receptor protein tyrosine kinases (PTKs), such as ErbB2. However, the precise molecular and cellular impact of PTPN12 deficiency in breast cancer progression remains to be fully clarified. Here, we addressed this issue by examining the effect of PTPN12 deficiency on breast cancer progressionin vivo, in a mouse model of ErbB2-dependent breast cancer using a conditional PTPN12-deficient mouse. Our studies showed that lack of PTPN12 in breast epithelial cells accelerated breast cancer development and lung metastasesin vivo. PTPN12-deficient breast cancer cells displayed enhanced tyrosine phosphorylation of the adaptor Cas, the adaptor paxillin, and the kinase Pyk2. They exhibited no detectable increase in ErbB2 tyrosine phosphorylation. PTPN12-deficient cells were more resistant to anoikis and had augmented migratory and invasive properties. Enhanced migration was corrected by inhibiting Pyk2. PTPN12-deficient breast cancer cells also acquired partial features of epithelial-to-mesenchymal transition (EMT), a feature of more aggressive forms of breast cancer. Hence, loss of PTPN12 promoted tumor progression in a mouse model of breast cancer, supporting the notion that PTPN12 is a tumor suppressor in human breast cancer. This function was related to the ability of PTPN12 to suppress cell survival, migration, invasiveness, and EMT and to inhibit tyrosine phosphorylation of Cas, Pyk2, and paxillin. These findings enhance our understanding of the role and mechanism of action of PTPN12 in the control of breast cancer progression.


Sign in / Sign up

Export Citation Format

Share Document