scholarly journals Prediction of room-temperature half-metallicity in layered halide double perovskites

2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Jian Xu ◽  
Changsong Xu ◽  
Jian-Bo Liu ◽  
Laurent Bellaiche ◽  
Hongjun Xiang ◽  
...  

AbstractHalf-metallic ferromagnets (HMFs) that possess intriguing physical properties with completely spin-polarized current are key candidates for high-efficiency spintronic devices. However, HMFs that could simultaneously have high Curie temperature (Tc), wide half-metallic gap (ΔHM), and large bulk magnetocrystalline anisotropy energy (MAE) are very rare, which significantly restrict their room-temperature (RT) applications. In this article, through materials screening in layered halide double perovskites (LHDPs), we have theoretically identified that Cs4FePb2Cl12, which has good crystallographic, dynamic and thermal stabilities, possesses an intrinsic half-metallic ground-state with a high Tc ~ 450 K. Interestingly, the long-range ferromagnetic ordering in bulk Cs4FePb2Cl12 is contributed by the strong super-superexchange interactions between the neighboring Fe d orbitals mediated by different anionic Cl p orbitals. The high Tc of layered Cs4FePb2Cl12 can be well maintained even in the monolayer limitation, i.e., Tc ~ 370 K for Cs4FePb2Cl12 monolayer, which is critical for nanoscale device applications. Moreover, both bulk and monolayer Cs4FePb2Cl12 can exhibit wide ΔHM ~ 0.55 eV and large MAE >320 μeV/Fe, comparable to that of the best HMFs reported in the literature. Our findings can significantly extend the potentials of LHDPs for high-temperature spintronic applications.

2022 ◽  
Vol 896 ◽  
pp. 163130
Author(s):  
Qasim Mahmood ◽  
Ghazanfar Nazir ◽  
Sonia Bouzgarrou ◽  
M.S. Rashid ◽  
Eman Algrafy ◽  
...  

2008 ◽  
Vol 8 (6) ◽  
pp. 2793-2810 ◽  
Author(s):  
W. Zhong ◽  
N. J. Tang ◽  
C. T. Au ◽  
Y. W. Du

The recent observation of room temperature tunneling magnetoresistance (TMR) in half-metallic A2FeMoO6 (A = Ca, Sr, Ba) double perovskites, and their importance to the emerging field of spintronics has led to considerable effort being dedicated to detailed investigations of the physical and chemical properties of these materials. This article will present an review of our recent investigations covering the synthesis, structures, magnetic and transport properties of "bulrush-like" A2FeMoO6 (A = Sr, Ba). Utilizing the high shape anisotropy as well as the reactivity of A2FeMoO6 to water and a sonochemical technique, we managed to manipulate the properties of grain boundary barriers, and thus put forward a new approach for the enhancement of room temperature TMR. The magnetocaloric effects of A2FeMoO6 double perovskites will also be discussed.


Author(s):  
Neda Rahmani ◽  
Mohammad Ebrahim Ghazi ◽  
Morteza Izadifard ◽  
Alireza Shabani ◽  
Jost Adam

The concurrence of half-metallicity and polar nature in Ca2MnVO6 and Ba2MnVO6 double perovskites making them suitable candidates for spintronic device applications.


2020 ◽  
Vol 66 (3 May-Jun) ◽  
pp. 265
Author(s):  
A. Taleb ◽  
A. Chahed ◽  
M. Boukli ◽  
H. Rozale ◽  
B. Amrani ◽  
...  

Investigation of band structure and thermo-physical response of the d0 new quaternary Heusler compounds KSrCZ (Z = P, As, Sb) within the frame work of density functional theory with full potential linearized augmented plane wave method has been analyzed. Results showed that type-Y3 is the most favorable atomic arrangement. All the compounds are found to be half-metallic ferromagnetic materials with an integer magnetic moment of 2.00 μB and a half-metallic gap EHM of 0.292, 0.234, and 0.351 eV, respectively. The half-metallicity of KSrCZ (Z = P, As, Sb) compounds can be kept in a quite large hydrostatic strain. Thermoelectric properties of the KSrCZ (Z = P, As, Sb) materials are additionally computed over an extensive variety of temperature and it is discovered that all compounds demonstrates higher figure of merit. The properties of half-metallicity and higher Seebeck coefficient makes these materials a promising candidates for thermoelectric and spintronic device applications. 


Author(s):  
Joachim Barth ◽  
Gerhard H. Fecher ◽  
Benjamin Balke ◽  
Tanja Graf ◽  
Andrey Shkabko ◽  
...  

In this work, the theoretical and experimental investigations of Co 2 Ti Z ( Z =Si, Ge or Sn) compounds are reported. Half-metallic ferromagnetism is predicted for all three compounds with only two bands crossing the Fermi energy in the majority channel. The magnetic moments fulfil the Slater–Pauling rule and the Curie temperatures are well above room temperature. All compounds show a metallic-like resistivity for low temperatures up to their Curie temperature, above the resistivity changes to semiconducting-like behaviour. A large negative magnetoresistance (MR) of 55 per cent is observed for Co 2 TiSn at room temperature in an applied magnetic field of μ 0 H =4 T , which is comparable to the large negative MRs of the manganites. The Seebeck coefficients are negative for all three compounds and reach their maximum values at their respective Curie temperatures and stay almost constant up to 950 K. The highest value achieved is −52 μVK −1 for Co 2 TiSn, which is large for a metal. The combination of half-metallicity and the constant large Seebeck coefficient over a wide temperature range makes these compounds interesting materials for thermoelectric applications and further spincaloric investigations.


Nanoscale ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 4204-4209 ◽  
Author(s):  
Bing Wang ◽  
Yehui Zhang ◽  
Liang Ma ◽  
Qisheng Wu ◽  
Yilv Guo ◽  
...  

MnX (X = P, As) monolayers: room-temperature ferromagnetic half-metallicity and sizable magnetic anisotropy.


2019 ◽  
Author(s):  
Shuyuan Zheng ◽  
Taiping Hu ◽  
Xin Bin ◽  
Yunzhong Wang ◽  
Yuanping Yi ◽  
...  

Pure organic room temperature phosphorescence (RTP) and luminescence from nonconventional luminophores have gained increasing attention. However, it remains challenging to achieve efficient RTP from unorthodox luminophores, on account of the unsophisticated understanding of the emission mechanism. Here we propose a strategy to realize efficient RTP in nonconventional luminophores through incorporation of lone pairs together with clustering and effective electronic interactions. The former promotes spin-orbit coupling and boost the consequent intersystem crossing, whereas the latter narrows energy gaps and stabilizes the triplets, thus synergistically affording remarkable RTP. Experimental and theoretical results of urea and its derivatives verify the design rationale. Remarkably, RTP from thiourea solids with unprecedentedly high efficiency of up to 24.5% is obtained. Further control experiments testify the crucial role of through-space delocalization on the emission. These results would spur the future fabrication of nonconventional phosphors, and moreover should advance understanding of the underlying emission mechanism.<br>


2016 ◽  
Vol 34 (4) ◽  
pp. 905-915 ◽  
Author(s):  
M. Rahmoune ◽  
A. Chahed ◽  
A. Amar ◽  
H. Rozale ◽  
A. Lakdja ◽  
...  

AbstractIn this work, first-principles calculations of the structural, electronic and magnetic properties of Heusler alloys CoMnYAl, CoMnYGa and CoMnYIn are presented. The full potential linearized augmented plane waves (FP-LAPW) method based on the density functional theory (DFT) has been applied. The structural results showed that CoMnYZ (Z = Al, Ga, In) compounds in the stable structure of type 1+FM were true half-metallic (HM) ferromagnets. The minority (half-metallic) band gaps were found to be 0.51 (0.158), 0.59 (0.294), and 0.54 (0.195) eV for Z = Al, Ga, and In, respectively. The characteristics of energy bands and origin of minority band gaps were also studied. In addition, the effect of volumetric and tetragonal strain on HM character was studied. We also investigated the structural, electronic and magnetic properties of the doped Heusler alloys CoMnYGa1−xAlx, CoMnYAl1−xInx and CoMnYGa1−xInx (x = 0, 0.25, 0.5, 0.75, 1). The composition dependence of the lattice parameters obeys Vegard’s law. All alloy compositions exhibit HM ferromagnetic behavior with a high Curie temperature (TC).


2004 ◽  
Vol 70 (18) ◽  
Author(s):  
R. Vidya ◽  
P. Ravindran ◽  
A. Kjekshus ◽  
H. Fjellvåg

Sign in / Sign up

Export Citation Format

Share Document