scholarly journals Importance of charge self-consistency in first-principles description of strongly correlated systems

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Swagata Acharya ◽  
Dimitar Pashov ◽  
Alexander N. Rudenko ◽  
Malte Rösner ◽  
Mark van Schilfgaarde ◽  
...  

AbstractFirst-principles approaches have been successful in solving many-body Hamiltonians for real materials to an extent when correlations are weak or moderate. As the electronic correlations become stronger often embedding methods based on first-principles approaches are used to better treat the correlations by solving a suitably chosen many-body Hamiltonian with a higher level theory. The success of such embedding theories, often referred to as second-principles, is commonly measured by the quality of self-energy Σ which is either a function of energy or momentum or both. However, Σ should, in principle, also modify the electronic eigenfunctions and thus change the real space charge distribution. While such practices are not prevalent, some works that use embedding techniques do take into account these effects. In such cases, choice of partitioning, of the parameters defining the correlated Hamiltonian, of double-counting corrections, and the adequacy of low-level Hamiltonian hosting the correlated subspace hinder a systematic and unambiguous understanding of such effects. Further, for a large variety of correlated systems, strong correlations are largely confined to the charge sector. Then an adequate nonlocal low-order theory is important, and the high-order local correlations embedding contributes become redundant. Here we study the impact of charge self-consistency within two example cases, TiSe2 and CrBr3, and show how real space charge re-distribution due to correlation effects taken into account within a first-principles Green’s function-based many-body perturbative approach is key in driving qualitative changes to the final electronic structure of these materials.

1999 ◽  
Vol 579 ◽  
Author(s):  
Serdar Ögüt ◽  
James R. Chelikowsky ◽  
Steven G. Louie

ABSTRACTAb initio quasiparticle gaps. self-energy corrections. exciton Coulomb energies. and optical gaps of Si nanocrystals are calculated using the higher-order finite difference psendopotential method. The calculations are performed in real space on hydrogen-passivated Si clusters with diameters up to 30 A (> 1000 atoins). The size-dependent self-enerkgy correction is enhanced substantially compared to bulk. and quantum confinement and reduced electronic screening result in appreciable excitonic Coulomb energies. Calculated optical gaps are in very good agreement with absorption data from Si nanocrystals.


2018 ◽  
Vol 211 ◽  
pp. 253-274 ◽  
Author(s):  
Johannes Hoja ◽  
Alexandre Tkatchenko

We discuss the impact of many-body dispersion effects, exact exchange, and vibrational free energies on a crystal structure prediction procedure applicable to pharmaceutically relevant systems. Furthermore, we show that this procedure is generally robust and the used approximations lead on average to changes of relative stabilities of only 1–2 kJ mol−1.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuri Minoguchi ◽  
Peter Rabl ◽  
Michael Buchhold

Hybrid evolution protocols, composed of unitary dynamics and repeated, weak or projective measurements, give rise to new, intriguing quantum phenomena, including entanglement phase transitions and unconventional conformal invariance. Defying the complications imposed by the non-linear and stochastic nature of the measurement process, we introduce a scenario of measurement-induced many body evolution, which possesses an exact analytical solution: bosonic Gaussian measurements. The evolution features a competition between the continuous observation of linear boson operators and a free Hamiltonian, and it is characterized by a unique and exactly solvable covariance matrix. Within this framework, we then consider an elementary model for quantum criticality, the free boson conformal field theory, and investigate in which way criticality is modified under measurements. Depending on the measurement protocol, we distinguish three fundamental scenarios (a) enriched quantum criticality, characterized by a logarithmic entanglement growth with a floating prefactor, or the loss of criticality, indicated by an entanglement growth with either (b) an area-law or (c) a volume-law. For each scenario, we discuss the impact of imperfect measurements, which reduce the purity of the wavefunction and are equivalent to Markovian decoherence, and present a set of observables, e.g., real-space correlations, the relaxation time, and the entanglement structure, to classify the measurement-induced dynamics for both pure and mixed states. Finally, we present an experimental tomography scheme, which grants access to the density operator of the system by using the continuous measurement record only.


2011 ◽  
Vol 1370 ◽  
Author(s):  
Eiji Kamiyama ◽  
Koji Sueoka

ABSTRACTThe impact of dimer formations at the surfaces of the internal atoms of silicon (Si) thin film was evaluated by examining silicon-on-insulator (SOI) and plate models. In the SOI models, a dimer formation was modeled at one side of the Si thin film. The plate models had two dimers at each surface, which had been considered as a Si bulk model in previous studies. First principles calculation showed that the deviations of Si atoms from the first to fourth layers of the SOI models did not differ remarkably from those of the plate models. The internal atoms deeper than the fifth layer showed near-zero deviation in some of the SOI models and had evident non-zero deviation in the other SOI models. All the SOI and plate models showed lower Si atom self-energy than in the Si bulk. The layer-to-layer distance of internal atoms in the films became longer than that of atoms in Si bulk. These results indicated that (i) Si films with dimer surfaces are relaxed by deviations in the whole film, and (ii) even the thick plate model with 32 layers dose not reveal the nature of Si bulk.


2020 ◽  
Author(s):  
Anuradha Pallipurath ◽  
Francesco Civati ◽  
Jonathan Skelton ◽  
Dean Keeble ◽  
Clare Crowley ◽  
...  

X-ray pair distribution function analysis is used with first-principles molecular dynamics simulations to study the co-operative H<sub>2</sub>O binding, structural dynamics and host-guest interactions in the channel hydrate of diflunisal.


2017 ◽  
Author(s):  
Lyudmyla Adamska ◽  
Sridhar Sadasivam ◽  
Jonathan J. Foley ◽  
Pierre Darancet ◽  
Sahar Sharifzadeh

Two-dimensional boron is promising as a tunable monolayer metal for nano-optoelectronics. We study the optoelectronic properties of two likely allotropes of two-dimensional boron using first-principles density functional theory and many-body perturbation theory. We find that both systems are anisotropic metals, with strong energy- and thickness-dependent optical transparency and a weak (<1%) absorbance in the visible range. Additionally, using state-of-the-art methods for the description of the electron-phonon and electron-electron interactions, we show that the electrical conductivity is limited by electron-phonon interactions. Our results indicate that both structures are suitable as a transparent electrode.


Author(s):  
Sebastian Eisele ◽  
Fabian M. Draber ◽  
Steffen Grieshammer

First principles calculations and Monte Carlo simulations reveal the impact of defect interactions on the hydration of barium-zirconate.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Stefan Dittmaier ◽  
Timo Schmidt ◽  
Jan Schwarz

Abstract First results on the radiative corrections of order $$ \mathcal{O} $$ O (Nfαsα) are presented for the off-shell production of W or Z bosons at the LHC, where Nf is the number of fermion flavours. These corrections comprise all diagrams at $$ \mathcal{O} $$ O (αsα) with closed fermion loops, form a gauge-invariant part of the next-to-next-to-leading-order corrections of mixed QCD×electroweak type, and are the ones that concern the issue of mass renormalization of the W and Z resonances. The occurring irreducible two-loop diagrams, which involve only self-energy insertions, are calculated with current standard techniques, and explicit analytical results on the electroweak gauge-boson self-energies at $$ \mathcal{O} $$ O (αsα) are given. Moreover, the generalization of the complex-mass scheme for a gauge-invariant treatment of the W/Z resonances is described for the order $$ \mathcal{O} $$ O (αsα). While the corrections, which are implemented in the Monte Carlo program Rady, are negligible for observables that are dominated by resonant W/Z bosons, they affect invariant-mass distributions at the level of up to 2% for invariant masses of ≳ 500 GeV and are, thus, phenomenologically relevant. The impact on transverse-momentum distributions is similar, taking into account that leading-order predictions to those distributions underestimate the spectrum.


Sign in / Sign up

Export Citation Format

Share Document