scholarly journals Homozygous duplication identified by whole genome sequencing causes LRBA deficiency

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Daniele Merico ◽  
Yehonatan Pasternak ◽  
Mehdi Zarrei ◽  
Edward J. Higginbotham ◽  
Bhooma Thiruvahindrapuram ◽  
...  

AbstractIn more than one-third of primary immunodeficiency (PID) patients, extensive genetic analysis including whole-exome sequencing (WES) fails to identify the genetic defect. Whole-genome sequencing (WGS) is able to detect variants missed by other genomics platforms, enabling the molecular diagnosis of otherwise unresolved cases. Here, we report two siblings, offspring of consanguineous parents, who experienced similar severe events encompassing early onset of colitis, lymphoproliferation, and hypogammaglobulinemia, typical of lipopolysaccharide-responsive and beige-like anchor (LRBA) or cytotoxic T lymphocyte antigen 4 (CTLA4) deficiencies. Gene-panel sequencing, comparative genomic hybridization (CGH) array, and WES failed to reveal a genetic aberration in relevant genes. WGS of these patients detected a 12.3 kb homozygous tandem duplication that was absent in control cohorts and is predicted to disrupt the reading frame of the LRBA gene. The variant was validated by PCR and Sanger sequencing, demonstrating the presence of the junction between the reference and the tandem-duplicated sequence. Droplet digital PCR (ddPCR) further confirmed the copy number in the unaffected parents (CN = 3, heterozygous) and affected siblings (CN = 4, homozygous), confirming the expected segregation pattern. In cases of suspected inherited immunodeficiency, WGS may reveal a mutation when other methods such as microarray and WES analysis failed to detect an aberration.

2019 ◽  
Vol 65 (2) ◽  
pp. 345-347
Author(s):  
Fulya Taylan ◽  
Benedicte Bang ◽  
Ingegerd Ivanov Öfverholm ◽  
Anh-Nhi Tran ◽  
Mats Heyman ◽  
...  

2020 ◽  
Vol 8 (5) ◽  
pp. 716
Author(s):  
Xueling Wu ◽  
Han Zhou ◽  
Liangzhi Li ◽  
Enhui Wang ◽  
Xiangyu Zhou ◽  
...  

Halotolerant microorganisms are promising in bio-treatment of hypersaline industrial wastewater. Four halotolerant bacteria strains were isolated from wastewater treatment plant, of which a strain LZH-9 could grow in the presence of up to 14% (w/v) NaCl, and it removed 81.9% chemical oxygen demand (COD) at 96 h after optimization. Whole genome sequencing of Lysinibacillus pakistanensis LZH-9 and comparative genomic analysis revealed metabolic versatility of different species of Lysinibacillus, and abundant genes involved in xenobiotics biodegradation, resistance to toxic compound, and salinity were found in all tested species of Lysinibacillus, in which Horizontal Gene Transfer (HGT) contributed to the acquisition of many important properties of Lysinibacillus spp. such as toxic compound resistance and osmotic stress resistance as revealed by phylogenetic analyses. Besides, genome wide positive selection analyses revealed seven genes that contained adaptive mutations in Lysinibacillus spp., most of which were multifunctional. Further expression assessment with Codon Adaption Index (CAI) also reflected the high metabolic rate of L. pakistanensis to digest potential carbon or nitrogen sources in organic contaminants, which was closely linked with efficient COD removal ability of strain LZH-9. The high COD removal efficiency and halotolerance as well as genomic evidences suggested that L. pakistanensis LZH-9 was promising in treating hypersaline industrial wastewater.


2015 ◽  
Vol 59 (4) ◽  
pp. 2006-2015 ◽  
Author(s):  
Beatriz Romero-Hernández ◽  
Ana P. Tedim ◽  
José Francisco Sánchez-Herrero ◽  
Pablo Librado ◽  
Julio Rozas ◽  
...  

ABSTRACTThe aim of this work was to characterize the antibiotic susceptibility and genetic diversity of 41Streptococcus gallolyticussubsp.gallolyticusisolates: 18 isolates obtained from animals and 23 human clinical isolates. Antibiotic susceptibility was determined by the semiautomatic Wider system and genetic diversity by pulsed-field gel electrophoresis (PFGE) with SmaI. Animal isolates grouped separately in the PFGE analysis, but no statistical differences in antimicrobial resistance were found between the two groups. The LMG 17956 sequence type 28 (ST28) strain recovered from the feces of a calf exhibited high levels of resistance to vancomycin and teicoplanin (MIC, ≥256 mg/liter). Its glycopeptide resistance mechanism was characterized by Southern blot hybridization and a primer-walking strategy, and finally its genome, determined by whole-genome sequencing, was compared with four closely relatedS. gallolyticussubsp.gallolyticusgenomes. Hybridization experiments demonstrated that a Tn1546-like element was integrated into the bacterial chromosome. In agreement with this finding, whole-genome sequencing confirmed a partial deletion of thevanY-vanZregion and partial duplication of thevanHgene. The comparative genomic analyses revealed that the LMG 17956 ST28 strain had acquired an unusually high number of transposable elements and had experienced extensive chromosomal rearrangements, as well as gene gain and loss events. In conclusion,S. gallolyticussubsp.gallolyticusisolates from animals seem to belong to lineages separate from those infecting humans. In addition, we report a glycopeptide-resistant isolate from a calf carrying a Tn1546-like element integrated into its chromosome.


Author(s):  
Marie Coutelier ◽  
Manuel Holtgrewe ◽  
Marten Jäger ◽  
Ricarda Flöttman ◽  
Martin A. Mensah ◽  
...  

AbstractCopy Number Variants (CNVs) are deletions, duplications or insertions larger than 50 base pairs. They account for a large percentage of the normal genome variation and play major roles in human pathology. While array-based approaches have long been used to detect them in clinical practice, whole-genome sequencing (WGS) bears the promise to allow concomitant exploration of CNVs and smaller variants. However, accurately calling CNVs from WGS remains a difficult computational task, for which a consensus is still lacking. In this paper, we explore practical calling options to reach the best compromise between sensitivity and sensibility. We show that callers based on different signal (paired-end reads, split reads, coverage depth) yield complementary results. We suggest approaches combining four selected callers (Manta, Delly, ERDS, CNVnator) and a regenotyping tool (SV2), and show that this is applicable in everyday practice in terms of computation time and further interpretation. We demonstrate the superiority of these approaches over array-based Comparative Genomic Hybridization (aCGH), specifically regarding the lack of resolution in breakpoint definition and the detection of potentially relevant CNVs. Finally, we confirm our results on the NA12878 benchmark genome, as well as one clinically validated sample. In conclusion, we suggest that WGS constitutes a timely and economically valid alternative to the combination of aCGH and whole-exome sequencing.


2017 ◽  
Vol 21 (1) ◽  
pp. 54-67 ◽  
Author(s):  
Jane E Armes ◽  
Mark Williams ◽  
Gareth Price ◽  
Tristan Wallis ◽  
Renee Gallagher ◽  
...  

Death in the fetal, perinatal, and early infant age-group has a multitude of causes, a proportion of which is presumed to be genetic. Defining a specific genetic aberration leading to the death is problematic at this young age, due to limited phenotype–genotype correlation inherent in the underdeveloped phenotype, the inability to assess certain phenotypic traits after death, and the problems of dealing with rare disorders. In this study, our aim was to increase the yield of identification of a defined genetic cause of an early death. Therefore, we employed whole genome sequencing and bioinformatic filtering techniques as a comprehensive, unbiased genetic investigation into 16 fetal, perinatal, and early infant deaths, which had undergone a full autopsy. A likely genetic cause was identified in two cases (in genes; COL2A1 and RYR1) and a speculative genetic cause in a further six cases (in genes: ARHGAP35, BBS7, CASZ1, CRIM1, DHCR7, HADHB, HAPLN3, HSPG2, MYO18B, and SRGAP2). This investigation indicates that whole genome sequencing is a significantly enabling technology when determining genetic causes of early death.


Sign in / Sign up

Export Citation Format

Share Document