scholarly journals Dopamine Neuron Challenge Test for early detection of Parkinson’s disease

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jingheng Zhou ◽  
Jicheng Li ◽  
Amy B. Papaneri ◽  
Nicholas P. Kobzar ◽  
Guohong Cui

AbstractDiagnosing Parkinson’s disease (PD) before the clinical onset proves difficult because the hallmark PD symptoms do not manifest until more than 60% of dopamine neurons in the substantia nigra pars compacta have been lost. Here we show that, by evoking a transient dopamine release and subsequently measuring the levels of dopamine metabolites in the cerebrospinal fluid and plasma, a hypodopaminergic state can be revealed when less than 30% of dopamine neurons are lost in mouse PD models. These findings may lead to sensitive and practical screening and diagnostic tests for detecting early PD in the high-risk population.

Author(s):  
Melissa Conti Mazza ◽  
Victoria Nguyen ◽  
Alexandra Beilina ◽  
Jinhui Ding ◽  
Mark R. Cookson

AbstractCoding mutations in the LRRK2 gene, encoding for a large protein kinase, have been shown to cause familial Parkinson’s disease (PD). The immediate biological consequence of LRRK2 mutations is to increase kinase activity, leading to the suggestion that inhibition of this enzyme might be useful therapeutically to slow disease progression. Genome-wide association studies have identified the chromosomal loci around LRRK2 and one of its proposed substrates, RAB29, as contributors towards the lifetime risk of sporadic PD. Considering the evidence for interactions between LRRK2 and RAB29 on the genetic and protein levels, here we generated a double knockout mouse model and determined whether there are any consequences on brain function with aging. From a battery of motor and non-motor behavioral tests, we noted only that 18-24 month Rab29-/- and double (Lrrk2-/-/Rab29-/-) knockout mice had diminished locomotor behavior in open field compared to wildtype mice. However, no genotype differences were seen in number of substantia nigra pars compacta (SNc) dopamine neurons or in tyrosine hydroxylase levels in the SNc and striatum, which might reflect a PD-like pathology. These results suggest that depletion of both Lrrk2 and Rab29 is tolerated, at least in mice, and support that this pathway might be able to be safely targeted for therapeutics in humans.Significance statementGenetic variation in LRRK2 that result in elevated kinase activity can cause Parkinson’s disease (PD), suggesting LRRK2 inhibition as a therapeutic strategy. RAB29, a substrate of LRRK2, has also been associated with increased PD risk. Evidence exists for an interactive relationship between LRRK2 and RAB29. Mouse models lacking either LRRK2 or RAB29 do not show brain pathologies. We hypothesized that the loss of both targets would result in additive effects across in vivo and post-mortem assessments in aging mice. We found that loss of both LRRK2 and RAB29 did not result in significant behavioral deficits or dopamine neuron loss. This evidence suggests that chronic inhibition of this pathway should be tolerated clinically.


2018 ◽  
Author(s):  
Michal Wegrzynowicz ◽  
Dana Bar-On ◽  
Laura Calo’ ◽  
Oleg Anichtchik ◽  
Mariangela Iovino ◽  
...  

SUMMARYParkinson’s Disease (PD) is characterized by the presence of α-synuclein aggregates known as Lewy bodies and Lewy neurites, whose formation is linked to disease development. The causal relation between α-synuclein aggregates and PD is not well understood. We generated a new transgenic mouse line (MI2) expressing human, aggregation-prone truncated 1-120 α-synuclein under the control of the tyrosine hydroxylase promoter. MI2 mice exhibit progressive aggregation of α-synuclein in dopaminergic neurons of the substantia nigra pars compacta and their striatal terminals. This is associated with a progressive reduction of striatal dopamine release, reduced striatal innervation and significant nigral dopaminergic nerve cell death starting from 6 and 12 months of age, respectively. Overt impairment in motor behavior was found in MI2 mice at 20 months of age, when 50% of dopaminergic neurons are lost. These changes were associated with an increase in the number and density of 20-500nm α-synuclein species as shown by dSTORM. Treatment with the oligomer modulator anle138b, from 9-12 months of age, restored striatal dopamine release and prevented dopaminergic cell death. These effects were associated with a reduction of the inner density of α-synuclein aggregates and an increase in dispersed small α-synuclein species as revealed by dSTORM. The MI2 mouse model recapitulates the progressive dopaminergic deficit observed in PD, showing that early synaptic dysfunction precedes dopaminergic axonal loss and neuronal death that become associated with a motor deficit upon reaching a certain threshold. Our data also provide new mechanistic insight for the effect of anle138b’s function in vivo supporting that targeting α-synuclein aggregation is a promising therapeutic approach for PD.


2021 ◽  
Vol 15 ◽  
Author(s):  
Nolwazi Z. Gcwensa ◽  
Drèson L. Russell ◽  
Rita M. Cowell ◽  
Laura A. Volpicelli-Daley

Parkinson’s disease (PD) is a progressive neurodegenerative disease that impairs movement as well as causing multiple other symptoms such as autonomic dysfunction, rapid eye movement (REM) sleep behavior disorder, hyposmia, and cognitive changes. Loss of dopamine neurons in the substantia nigra pars compacta (SNc) and loss of dopamine terminals in the striatum contribute to characteristic motor features. Although therapies ease the symptoms of PD, there are no treatments to slow its progression. Accumulating evidence suggests that synaptic impairments and axonal degeneration precede neuronal cell body loss. Early synaptic changes may be a target to prevent disease onset and slow progression. Imaging of PD patients with radioligands, post-mortem pathologic studies in sporadic PD patients, and animal models of PD demonstrate abnormalities in presynaptic terminals as well as postsynaptic dendritic spines. Dopaminergic and excitatory synapses are substantially reduced in PD, and whether other neuronal subtypes show synaptic defects remains relatively unexplored. Genetic studies implicate several genes that play a role at the synapse, providing additional support for synaptic dysfunction in PD. In this review article we: (1) provide evidence for synaptic defects occurring in PD before neuron death; (2) describe the main genes implicated in PD that could contribute to synapse dysfunction; and (3) show correlations between the expression of Snca mRNA and mouse homologs of PD GWAS genes demonstrating selective enrichment of Snca and synaptic genes in dopaminergic, excitatory and cholinergic neurons. Altogether, these findings highlight the need for novel therapeutics targeting the synapse and suggest that future studies should explore the roles for PD-implicated genes across multiple neuron types and circuits.


2021 ◽  
Vol 14 ◽  
Author(s):  
Julio Aguila ◽  
Shangli Cheng ◽  
Nigel Kee ◽  
Ming Cao ◽  
Menghan Wang ◽  
...  

Defining transcriptional profiles of substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) dopamine neurons is critical to understanding their differential vulnerability in Parkinson’s Disease (PD). Here, we determine transcriptomes of human SNc and VTA dopamine neurons using LCM-seq on a large sample cohort. We apply a bootstrapping strategy as sample input to DESeq2 and identify 33 stably differentially expressed genes (DEGs) between these two subpopulations. We also compute a minimal sample size for identification of stable DEGs, which highlights why previous reported profiles from small sample sizes display extensive variability. Network analysis reveal gene interactions unique to each subpopulation and highlight differences in regulation of mitochondrial stability, apoptosis, neuronal survival, cytoskeleton regulation, extracellular matrix modulation as well as synapse integrity, which could explain the relative resilience of VTA dopamine neurons. Analysis of PD tissues showed that while identified stable DEGs can distinguish the subpopulations also in disease, the SNc markers SLIT1 and ATP2A3 were down-regulated and thus appears to be biomarkers of disease. In summary, our study identifies human SNc and VTA marker profiles, which will be instrumental for studies aiming to modulate dopamine neuron resilience and to validate cell identity of stem cell-derived dopamine neurons.


2018 ◽  
Vol 11 (08) ◽  
pp. 1850103 ◽  
Author(s):  
Hardik Joshi ◽  
Brajesh Kumar Jha

Neuron is a fundamental unit of the brain, which is specialized to transmit information throughout the body through electrical and chemical signals. Calcium ([Formula: see text]) ions are known as second messengers which play important roles in the movement of the neurotransmitter. Calbindin-[Formula: see text] is a [Formula: see text] binding protein which is involved in regulation of intracellular [Formula: see text] ions and maintains [Formula: see text] homeostasis level, it also alters the cytosolic calcium concentration ([[Formula: see text]]) in nerve cells to keep the cell alive. Parkinson’s disease (PD) is a chronic progressive neurodegenerative brain disorder of the nervous system. Several regions of the brain indicate the hallmark of the PD. The symptoms of PD are plainly linked with the degeneration and death of dopamine neurons in the substantia nigra pars compacta located in midbrain which is accompanied by depletion in calbindin-[Formula: see text]. In the present paper, the neuroprotective role of calbindin-[Formula: see text] in the cytoplasmic [[Formula: see text]] distribution is studied. The elicitation in [[Formula: see text]] is due to the presence of low amount of calbindin-[Formula: see text] which can be portrayed and is a hallmark of PD. A one-dimensional space time fractional reaction diffusion equation is designed by keeping in mind the physiological condition taking place inside Parkinson’s brain. Computational results are performed in MATLAB.


Pteridines ◽  
1999 ◽  
Vol 10 (1) ◽  
pp. 5-13 ◽  
Author(s):  
T. Nagatsu ◽  
H. Ichinose ◽  
M. Mogi ◽  
A. Togari

βBoth neopterin and biopterin concentrations in cerebrospinal fluid from patients with Parkinson's disease, in which the nigrostriatal dopamine neurons degenerate, were lower than those from age-matched older control subjects. However, the decrease in biopterin was more marked than that in neopterin, resulting in the increase in the neopterin/ biopterin ratio in Parkinson's disease. These results suggests that neopterin in cerebrospinal fluid in Parkinson's disease may partly be derived from immunoactivated glial cells, besides catecholamine or serotonin n eurons including nigrostriatal dopamine neurons. In accordance to this hypothesis, cytokines (TNF-α, IL-1, IL-2 , IL-6, EGF, TGF-α, TGF-β1) were found to be increased in the striatum and/or in cerebrospinal fluid. The increment of cytokines in the brain in Parkinson's disease may be related to the mechanism of neurodegeneration of dopaminergic neurons in Parkinson's disease . In contrast to Parkinson's disease, in hereditary progressive dystonia/ dopa-responsive dystonia, which is a dopamine deficiency caused by mutations in GTP cyclohydrolase I without neuronal cell death (Segawa's disease), neopterin and biopterin in cerebrospinal fluid decreases in parallel owing to the decreased activity in GTP cyclohydrolase I .


Author(s):  
Xuling Tan ◽  
Junjian Hu ◽  
Fengyu Ming ◽  
Lingling Lv ◽  
Weiqian Yan ◽  
...  

Precise recognition of early Parkinson’s disease (PD) has always been a challenging task requiring more feasible biomarkers to be integrated to improve diagnostic accuracy. MicroRNAs (miRNAs) of cerebrospinal fluid (CSF) are believed to be potential and promising candidate biomarkers for PD. However, the role of altered miRNAs of CSF play in PD is unclear. Here, we recruited patients with early stages of PD and controls to analyze the expression of miRNA in CSF by the Next Generation Sequencing (NGS). Furthermore, we tested the levels of these miRNA in SH-SY5Y cells treated with MPP+ using real-time quantitative PCR. We found 21 miRNAs were upregulated in CSF of early PD patients and miR-409-3p, one of the identified 21 miRNAs, was further confirmed in SH-SY5Y cells treated with MPP+. Also, more cells survived in the overexpression of the miR-409-3p group when SH-SY5Y cells and mice were treated with MPP+ and MPTP, respectively. Mechanistically, we demonstrated the binding of miR-409-3p and 3’UTR of ATXN3 through a dual luciferase reporter gene assay. Moreover, miR-409-3p mimic reduced the aggregation of polyglutamine-expanded mutant of ATXN3 and apoptosis. Our results provide experimental evidence for miR-409-3p in CSF as a diagnostic marker of PD.


2021 ◽  
Vol 220 (4) ◽  
Author(s):  
Nikhil Panicker ◽  
Preston Ge ◽  
Valina L. Dawson ◽  
Ted M. Dawson

Parkinson’s disease (PD) is a progressive neurodegenerative disorder resulting from the death of dopamine neurons in the substantia nigra pars compacta. Our understanding of PD biology has been enriched by the identification of genes involved in its rare, inheritable forms, termed PARK genes. These genes encode proteins including α-syn, LRRK2, VPS35, parkin, PINK1, and DJ1, which can cause monogenetic PD when mutated. Investigating the cellular functions of these proteins has been instrumental in identifying signaling pathways that mediate pathology in PD and neuroprotective mechanisms active during homeostatic and pathological conditions. It is now evident that many PD-associated proteins perform multiple functions in PD-associated signaling pathways in neurons. Furthermore, several PARK proteins contribute to non–cell-autonomous mechanisms of neuron death, such as neuroinflammation. A comprehensive understanding of cell-autonomous and non–cell-autonomous pathways involved in PD is essential for developing therapeutics that may slow or halt its progression.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Tonya N. Taylor ◽  
W. Michael Caudle ◽  
Gary W. Miller

Dopamine is transported into synaptic vesicles by the vesicular monoamine transporter (VMAT2; SLC18A2). Disruption of dopamine storage has been hypothesized to damage the dopamine neurons that are lost in Parkinson's disease. By disrupting vesicular storage of dopamine and other monoamines, we have created a progressive mouse model of PD that exhibits catecholamine neuron loss in the substantia nigra pars compacta and locus coeruleus and motor and nonmotor symptoms. With a 95% reduction in VMAT2 expression, VMAT2-deficient animals have decreased motor function, progressive deficits in olfactory discrimination, shorter latency to behavioral signs of sleep, delayed gastric emptying, anxiety-like behaviors at younger ages, and a progressive depressive-like phenotype. Pathologically, the VMAT2-deficient mice display progressive neurodegeneration in the substantia nigra (SNpc), locus coeruleus (LC), and dorsal raphe (DR) coupled withα-synuclein accumulation. Taken together, these studies demonstrate that reduced vesicular storage of monoamines and the resulting disruption of the cytosolic environment may play a role in the pathogenesis of parkinsonian symptoms and neurodegeneration. The multisystem nature of the VMAT2-deficient mice may be useful in developing therapeutic strategies that go beyond the dopamine system.


Sign in / Sign up

Export Citation Format

Share Document