scholarly journals Chondrogenic differentiation induced by extracellular vesicles bound to a nanofibrous substrate

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Marta R. Casanova ◽  
Hugo Osório ◽  
Rui L. Reis ◽  
Albino Martins ◽  
Nuno M. Neves

AbstractExtracellular vesicles (EVs) are being increasingly studied owing to its regenerative potential, namely EVs derived from human bone marrow mesenchymal stem cells (hBM-MSCs). Those can be used for controlling inflammation, repairing injury, and enhancing tissue regeneration. Differently, the potential of EVs derived from human articular chondrocytes (hACs) to promote cartilage regeneration has not been thoroughly investigated. This work aims to develop an EVs immobilization system capable of selectively bind EVs present in conditioned medium obtained from cultures of hACs or hBM-MSC. For that, an anti-CD63 antibody was immobilized at the surface of an activated and functionalized electrospun nanofibrous mesh. The chondrogenic potential of bound EVs was further assessed by culturing hBM-MSCs during 28 days under basal conditions. EVs derived from hACs cultured under differentiation medium or from chondrogenically committed hBM-MSCs induced a chondrogenic phenotype characterized by marked induction of SOX9, COMP, Aggrecan and Collagen type II, and matrix glycosaminoglycans synthesis. Indeed, both EVs immobilization systems outperformed the currently used chondroinductive strategies. These data show that naturally secreted EVs can guide the chondrogenic commitment of hBM-MSCs in the absence of any other chemical or genetic chondrogenic inductors based in medium supplementation.

2007 ◽  
Vol 20 (03) ◽  
pp. 185-191 ◽  
Author(s):  
A. O. Oshin ◽  
E. Caporali ◽  
C. R. Byron ◽  
A. A. Stewart ◽  
M. C. Stewart

SummaryArticular chondrocytes are phenotypically unique cells that are responsible for the maintenance of articular cartilage. The articular chondrocytic phenotype is influenced by a range of soluble factors. In particular, members of the bone morphogenetic protein (BMP) family support the articular chondrocytic phenotype and stimulate synthesis of cartilaginous matrix. This study was carried out to determine the importance of BMPs in supporting the differentiated phenotype of articular chondrocytes in vitro. Exogenous BMP-2 supported expression of collagen type II and aggrecan in monolayer chondrocyte cultures, slowing the dedifferentiation process that occurs under these conditions. In contrast, BMP-2 had little effect on expression of these genes in three-dimensional aggregate cultures. Endogenous BMP-2 expression was lost in monolayer cultures, coincident with the down-regulation of collagen type II and aggrecan mRNAs, whereas BMP-2 mRNA levels were stable in aggregate cultures. Antagonism of endogenous BMP activity in aggregate cultures by Noggin or a soluble form of the BMP receptor resulted in reduced expression of collagen type II and aggrecan mRNAs, reduced collagen type II protein and sulfated glycosaminoglycan (GAG) deposition into the aggregate matrices and reduced secretion of GAGs into the culture media. These results indicate that endogenous BMPs are required for maintenance of the differentiated articular chondrocytic phenotype in vitro. These findings are of importance to cell-based strategies designed to repair articular cartilage. Articular chondrocytes require conditions that will support endogenous expression of BMPs to maintain the specialized phenotype of these cells.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Se-Joon Oh ◽  
Kyung-Un Choi ◽  
Sung-Won Choi ◽  
Sung-Dong Kim ◽  
Soo-Keun Kong ◽  
...  

Adipose-derived stromal cells (ADSCs) can repair auricular cartilage defects. Furthermore, stem cell secretome may also be a promising biological therapeutic option, which is equal to or even superior to the stem cell. We explored the therapeutic efficacies of ADSCs and their secretome in terms of rabbit auricular cartilage regeneration. ADSCs and their secretome were placed into surgically created auricular cartilage defects. After 4 and 8 weeks, the resected auricles were histopathologically and immunohistochemically examined. We used real-time PCR to determine the levels of genes expressing collagen type II, transforming growth factor-β1 (TGF-β1), and insulin-like growth factor-1 (IGF-1). ADSCs significantly improved auricular cartilage regeneration at 4 and 8 weeks, compared to the secretome and PBS groups, as revealed by gross examination, histopathologically and immunohistochemically. ADSCs upregulated the expression of collagen type II, TGF-β1, and IGF-1 more so than did the secretome or PBS. The expression levels of collagen type II and IGF-1 were significantly higher at 8 weeks than at 4 weeks after ADSC injection. Although ADSCs thus significantly enhanced new cartilage formation, their secretome did not. Therefore, ADSCs may be more effective than their secretome in the repair of auricular cartilage defect.


2018 ◽  
Vol 9 ◽  
pp. 204173141878982 ◽  
Author(s):  
Elisa Costa ◽  
Cristina González-García ◽  
José Luis Gómez Ribelles ◽  
Manuel Salmerón-Sánchez

Articular chondrocytes are difficult to grow, as they lose their characteristic phenotype following expansion on standard tissue culture plates. Here, we show that culturing them on surfaces of poly(L-lactic acid) of well-defined microtopography allows expansion and maintenance of characteristic chondrogenic markers. We investigated the dynamics of human chondrocyte dedifferentiation on the different poly(L-lactic acid) microtopographies by the expression of collagen type I, collagen type II and aggrecan at different culture times. When seeded on poly(L-lactic acid), chondrocytes maintained their characteristic hyaline phenotype up to 7 days, which allowed to expand the initial cell population approximately six times without cell dedifferentiation. Maintenance of cell phenotype was afterwards correlated to cell adhesion on the different substrates. Chondrocytes adhesion occurs via the α5 β1 integrin on poly(L-lactic acid), suggesting cell–fibronectin interactions. However, α2 β1 integrin is mainly expressed on the control substrate after 1 day of culture, and the characteristic chondrocytic markers are lost (collagen type II expression is overcome by the synthesis of collagen type I). Expanding chondrocytes on poly(L-lactic acid) might be an effective solution to prevent dedifferentiation and improving the number of cells needed for autologous chondrocyte transplantation.


2017 ◽  
Vol 8 ◽  
pp. 204173141769754 ◽  
Author(s):  
Maria Sancho-Tello ◽  
Sara Martorell ◽  
Manuel Mata Roig ◽  
Lara Milián ◽  
MA Gámiz-González ◽  
...  

The clinical management of large-size cartilage lesions is difficult due to the limited regenerative ability of the cartilage. Different biomaterials have been used to develop tissue engineering substitutes for cartilage repair, including chitosan alone or in combination with growth factors to improve its chondrogenic properties. The main objective of this investigation was to evaluate the benefits of combining activated platelet-rich plasma with a stabilized porous chitosan scaffold for cartilage regeneration. To achieve this purpose, stabilized porous chitosan scaffolds were prepared using freeze gelation and combined with activated platelet-rich plasma. Human primary articular chondrocytes were isolated and cultured in stabilized porous chitosan scaffolds with and without combination to activated platelet-rich plasma. Scanning electron microscopy was used for the morphological characterization of the resulting scaffolds. Cell counts were performed in hematoxylin and eosin–stained sections, and type I and II collagen expression was evaluated using immunohistochemistry. Significant increase in cell number in activated platelet-rich plasma/stabilized porous chitosan was found compared with stabilized porous chitosan scaffolds. Chondrocytes grown on stabilized porous chitosan expressed high levels of type I collagen but type II was not detectable, whereas cells grown on activated platelet rich plasma/stabilized porous chitosan scaffolds expressed high levels of type II collagen and type I was almost undetectable. In summary, activated platelet-rich plasma increases nesting and induces the differentiation of chondrocytes cultured on stabilized porous chitosan scaffolds.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Se-Joon Oh ◽  
Hee-Young Park ◽  
Kyung-Un Choi ◽  
Sung-Won Choi ◽  
Sung-Dong Kim ◽  
...  

Tissue engineering cell-based therapy using induced pluripotent stem cells and adipose-derived stem cells (ASCs) may be promising tools for therapeutic applications in tissue engineering because of their abundance, relatively easy harvesting, and high proliferation potential. The purpose of this study was to investigate whether ASCs can promote the auricular cartilage regeneration in the rabbit. In order to assess their differentiation ability, ASCs were injected into the midportion of a surgically created auricular cartilage defect in the rabbit. Control group was injected with normal saline. After 1 month, the resected auricles were examined histopathologically and immunohistochemically. The expression of collagen type II and transforming growth factor-β1 (TGF-β1) were analyzed by quantitative polymerase chain reaction. Histopathology showed islands of new cartilage formation at the site of the surgically induced defect in the ASC group. Furthermore, Masson’s trichrome staining and immunohistochemistry for S-100 showed numerous positive chondroblasts. The expression of collagen type II and TGF-β1 were significantly higher in the ASCs than in the control group. In conclusion, ASCs have regenerative effects on the auricular cartilage defect of the rabbit. These effects would be expected to contribute significantly to the regeneration of damaged cartilage tissue in vivo.


2020 ◽  
Author(s):  
Ilona Uzieliene ◽  
Edvardas Bagdonas ◽  
Kazuto Hoshi ◽  
Tomoaki Sakamoto ◽  
Atsuhiko Hikita ◽  
...  

Abstract Background: Due to its low capacity for self-repair, articular cartilage is highly susceptible to damage and deterioration, which leads to the development of degenerative joint diseases such as osteoarthritis. Menstrual blood-derived mesenchymal stem cells (MenSCs) are much less characterized compared to bone marrow mesenchymal stem cells (BMMSCs). However, MenSCs seem an attractive alternative to classical BMMSCs due to ease of access and broader differentiation capacity. The aim of this study was to evaluate chondrogenic differentiation potential of MenSCs and BMMSCs stimulated with transforming growth factor β (TGF-β3) and activin A, member of the TGF-β superfamily of proteins.Methods: MenSCs (n=6) and BMMSCs (n=5) were isolated from different healthy donors. Expression of cell surface markers CD90, CD73, CD105, CD44, CD45, CD14, CD36, CD55, CD54, CD63, CD106, CD34, CD10, Notch1 was analysed by flow cytometry. Cell proliferation capacity was determined using CCK-8 proliferation kit. Adipogenic differentiation capacity was evaluated according to Oil-Red staining, osteogenic differentiation - Alizarin Red staining. Chondrogenic differentiation (Activin A and TGF-β3 stimulation) was induced in vitro and in vivo (subcutaneous scaffolds in nude BALB/c mice) and investigated by histologically and by expression of chondrogenic genes (collagen type II, aggrecan). Activin A protein production was evaluated by ELISA.Results: MenSCs exhibited a higher proliferation rate, as compared to BMMSCs, and a different expression profile of several cell surface markers. Activin A stimulated collagen type II gene expression and glycosaminoglycan synthesis in TGF-β3 treated MenSCs but not in BMMSCs, both in vitro and in vivo, although the effects of TGF-β3 alone were more pronounced in BMMSCs in vitro. Conclusion: These data suggest that activin A exerts differential effects on the induction of chondrogenic differentiation in MenSCs vs. BMMSCs, which implies that different mechanisms of chondrogenic regulation are activated in these cells. Following further optimisation of differentiation protocols and the choice of growth factors, potentially including activin A, MenSCs may turn out to be a promising population of stem cells for the development of cell-based therapies with the capacity to stimulate cartilage repair and regeneration.Trial registration: Not applicable.


2011 ◽  
Vol 6 (9) ◽  
pp. 721-730 ◽  
Author(s):  
Agnes D. Berendsen ◽  
Lucienne A. Vonk ◽  
Behrouz Zandieh-Doulabi ◽  
Vincent Everts ◽  
Ruud A. Bank

2019 ◽  
Vol 20 (4) ◽  
pp. 795 ◽  
Author(s):  
Ufuk Tan Timur ◽  
Marjolein Caron ◽  
Guus van den Akker ◽  
Anna van der Windt ◽  
Jenny Visser ◽  
...  

During standard expansion culture (i.e., plasma osmolarity, 280 mOsm) human articular chondrocytes dedifferentiate, making them inappropriate for autologous chondrocyte implantation to treat cartilage defects. Increasing the osmolarity of culture media to physiological osmolarity levels of cartilage (i.e., 380 mOsm), increases collagen type II (COL2A1) expression of human articular chondrocytes in vitro, but the underlying molecular mechanism is not fully understood. We hypothesized that TGF-β superfamily signaling may drive expression of COL2A1 under physiological osmolarity culture conditions. Human articular chondrocytes were cultured in cytokine-free medium of 280 or 380 mOsm with or without siRNA mediated TGF-β2 knockdown (RNAi). Expression of TGF-β isoforms, and collagen type II was evaluated by RT-qPCR and immunoblotting. TGF-β2 protein secretion was evaluated using ELISA and TGF-β bioactivity was determined using an established reporter assay. Involvement of BMP signaling was investigated by culturing human articular chondrocytes in the presence or absence of BMP inhibitor dorsomorphin and BMP bioactivity was determined using an established reporter assay. Physiological cartilage osmolarity (i.e., physosmolarity) most prominently increased TGF-β2 mRNA expression and protein secretion as well as TGF-β bioactivity. Upon TGF-β2 isoform-specific knockdown, gene expression of chondrocyte marker COL2A1 was induced. TGF-β2 RNAi under physosmolarity enhanced TGF-β bioactivity. BMP bioactivity increased upon physosmotic treatment, but was not related to TGF-β2 RNAi. In contrast, dorsomorphin inhibited COL2A1 mRNA expression in human articular chondrocytes independent of the osmotic condition. Our data suggest a role for TGF-β superfamily member signaling in physosmolarity-induced mRNA expression of collagen type II. As physosmotic conditions favor the expression of COL2A1 independent of our manipulations, contribution of other metabolic, post-transcriptional or epigenetic factors cannot be excluded in the underlying complex and interdependent regulation of marker gene expression. Dissecting these molecular mechanisms holds potential to further improve future cell-based chondral repair strategies.


2013 ◽  
Vol 19 (1-2) ◽  
pp. 59-65 ◽  
Author(s):  
Marijn Rutgers ◽  
Daniel B. Saris ◽  
Lucienne A. Vonk ◽  
Mattie H. van Rijen ◽  
Vanessa Akrum ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document