scholarly journals Adenovectors encoding RSV-F protein induce durable and mucosal immunity in macaques after two intramuscular administrations

npj Vaccines ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
N. C. Salisch ◽  
A. Izquierdo Gil ◽  
D. N. Czapska-Casey ◽  
L. Vorthoren ◽  
J. Serroyen ◽  
...  

AbstractRespiratory Syncytial Virus (RSV) can cause severe respiratory disease, yet a licensed vaccine is not available. We determined the immunogenicity of two homologous and one heterologous intramuscular prime-boost vaccination regimens using replication-incompetent adenoviral vectors of human serotype 26 and 35 (Ad26 and Ad35), expressing a prototype antigen based on the wild-type fusion (F) protein of RSV strain A2 in adult, RSV-naive cynomolgus macaques. All regimens induced substantial, boostable antibody responses that recognized the F protein in pre- and postfusion conformation, neutralized multiple strains of RSV, and persisted for at least 80 weeks. Vaccination induced durable systemic RSV-F-specific T-cell responses characterized mainly by CD4+ T cells expressing Th1-type cytokines, as well as RSV-F-specific CD4+ and CD8+ T cells, IgG, and IgA in the respiratory tract. Intramuscular immunization with Ad26 and 35 vectors thus is a promising approach for the development of an optimized RSV vaccine expected to induce long-lasting humoral and cellular immune responses that distribute systemically and to mucosal sites.

2007 ◽  
Vol 81 (24) ◽  
pp. 13456-13468 ◽  
Author(s):  
Ingrid Karlsson ◽  
Benoît Malleret ◽  
Patricia Brochard ◽  
Benoît Delache ◽  
Julien Calvo ◽  
...  

ABSTRACT Cellular immune responses make an important contribution to both the control of human immunodeficiency virus (HIV) replication and disease progression. We used a pathogenic model of SIVmac251 infection of cynomolgus macaques to longitudinally evaluate cellular immune responses in association with various rates of disease progression. We found an inverse relationship between plasma viral load and the simian immunodeficiency virus (SIV)-specific T cells responses in peripheral blood and lymph nodes. SIV-specific T-cell responses in peripheral blood were transient during primary infection, with the highest responses detected around 3 months after infection. There was also a transient increase of central memory CD8+ T cells in peripheral blood during primary infection, and effector memory T-cell counts in peripheral lymph nodes were increased. This study emphasizes the importance of the early virus-specific immune responses in the outcome of HIV/SIV disease and provides details about the changes of virus-specific immune responses over time.


Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 126
Author(s):  
Lilin Lai ◽  
Nadine Rouphael ◽  
Yongxian Xu ◽  
Amy C. Sherman ◽  
Srilatha Edupuganti ◽  
...  

The cellular immune responses elicited by an investigational vaccine against an emergent variant of influenza (H3N2v) are not fully understood. Twenty-five subjects, enrolled in an investigational influenza A/H3N2v vaccine study, who received two doses of vaccine 21 days apart, were included in a sub-study of cellular immune responses. H3N2v-specific plasmablasts were determined by ELISpot 8 days after each vaccine dose and H3N2v specific CD4+ T cells were quantified by intracellular cytokine and CD154 (CD40 ligand) staining before vaccination, 8 and 21 days after each vaccine dose. Results: 95% (19/20) and 96% (24/25) subjects had pre-existing H3N2v specific memory B, and T cell responses, respectively. Plasmablast responses at Day 8 after the first vaccine administration were detected against contemporary H3N2 strains and correlated with hemagglutination inhibition HAI (IgG: p = 0.018; IgA: p < 0.001) and Neut (IgG: p = 0.038; IgA: p = 0.021) titers and with memory B cell frequency at baseline (IgA: r = 0.76, p < 0.001; IgG: r = 0.74, p = 0.0001). The CD4+ T cells at Days 8 and 21 expanded after prime vaccination and this expansion correlated strongly with early post-vaccination HAI and Neut titers (p ≤ 0.002). In an adult population, the rapid serological response observed after initial H3N2v vaccination correlates with post-vaccination plasmablasts and CD4+ T cell responses.


2006 ◽  
Vol 80 (22) ◽  
pp. 10972-10979 ◽  
Author(s):  
Juan A. Quiroga ◽  
Silvia Llorente ◽  
Inmaculada Castillo ◽  
Elena Rodríguez-Iñigo ◽  
Margarita Pardo ◽  
...  

ABSTRACT Occult hepatitis C virus (HCV) infection is a type of recently identified chronic infection that is evidenced only by detection of HCV RNA in liver; patients consistently test negative for antibodies to HCV and HCV RNA in serum. Using ex vivo and in vitro measures of T-cell responses, we have identified functional virus-specific memory CD4+ and CD8+ T cells in the peripheral blood of patients with occult HCV infection. The features of the virus-specific T cells were consistent with immune surveillance functions, supporting previous exposure to HCV. In addition, the magnitudes of CD4+ and CD8+ T-cell responses were in parallel and correlated inversely with the extent of liver HCV infection. The detection of HCV-specific T cells in individuals in whom HCV RNA can persist in the liver despite the absence of viremia and antibodies indicates that HCV replication is prolonged in the face of virus-specific CD4+ and CD8+ T-cell responses. These findings demonstrate that HCV-specific cellular immune responses are markers not only of previous exposure to and recovery from HCV but also of ongoing occult HCV infection.


Viruses ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 26 ◽  
Author(s):  
Georgia Kalodimou ◽  
Svenja Veit ◽  
Sylvia Jany ◽  
Ulrich Kalinke ◽  
Christopher C. Broder ◽  
...  

Nipah virus (NiV) is an emerging zoonotic virus that is transmitted by bats to humans and to pigs, causing severe respiratory disease and often fatal encephalitis. Antibodies directed against the NiV-glycoprotein (G) protein are known to play a major role in clearing NiV infection and in providing vaccine-induced protective immunity. More recently, T cells have been also shown to be involved in recovery from NiV infection. So far, relatively little is known about the role of T cell responses and the antigenic targets of NiV-G that are recognized by CD8 T cells. In this study, NiV-G protein served as the target immunogen to activate NiV-specific cellular immune responses. Modified Vaccinia virus Ankara (MVA), a safety-tested strain of vaccinia virus for preclinical and clinical vaccine research, was used for the generation of MVA–NiV-G candidate vaccines expressing different versions of recombinant NiV-G. Overlapping peptides covering the entire NiV-G protein were used to identify major histocompatibility complex class I/II-restricted T cell responses in type I interferon receptor-deficient (IFNAR−/−) mice after vaccination with the MVA–NiV-G candidate vaccines. We have identified an H2-b-restricted nonamer peptide epitope with CD8 T cell antigenicity and a H2-b 15mer with CD4 T cell antigenicity in the NiV-G protein. The identification of this epitope and the availability of the MVA–NiV-G candidate vaccines will help to evaluate NiV-G-specific immune responses and the potential immune correlates of vaccine-mediated protection in the appropriate murine models of NiV-G infection. Of note, a soluble version of NiV-G was advantageous in activating NiV-G-specific cellular immune responses using these peptides.


2021 ◽  
Vol 6 (59) ◽  
pp. eabj1750
Author(s):  
Daryl Geers ◽  
Marc C. Shamier ◽  
Susanne Bogers ◽  
Gerco den Hartog ◽  
Lennert Gommers ◽  
...  

The emergence of SARS-CoV-2 variants harboring mutations in the spike (S) protein has raised concern about potential immune escape. Here, we studied humoral and cellular immune responses to wild type SARS-CoV-2 and the B.1.1.7 and B.1.351 variants of concern in a cohort of 121 BNT162b2 mRNA-vaccinated health care workers (HCW). Twenty-three HCW recovered from mild COVID-19 disease and exhibited a recall response with high levels of SARS-CoV-2-specific functional antibodies and virus-specific T cells after a single vaccination. Specific immune responses were also detected in seronegative HCW after one vaccination, but a second dose was required to reach high levels of functional antibodies and cellular immune responses in all individuals. Vaccination-induced antibodies cross-neutralized the variants B.1.1.7 and B.1.351, but the neutralizing capacity and Fc-mediated functionality against B.1.351 was consistently 2- to 4-fold lower than to the homologous virus. In addition, peripheral blood mononuclear cells were stimulated with peptide pools spanning the mutated S regions of B.1.1.7 and B.1.351 to detect cross-reactivity of SARS-CoV-2-specific T cells with variants. Importantly, we observed no differences in CD4+ T-cell activation in response to variant antigens, indicating that the B.1.1.7 and B.1.351 S proteins do not escape T-cell-mediated immunity elicited by the wild type S protein. In conclusion, this study shows that some variants can partially escape humoral immunity induced by SARS-CoV-2 infection or BNT162b2 vaccination, but S-specific CD4+ T-cell activation is not affected by the mutations in the B.1.1.7 and B.1.351 variants.


2020 ◽  
Author(s):  
Asgar Ansari ◽  
Rakesh Arya ◽  
Shilpa Sachan ◽  
Someshwar Nath Jha ◽  
Anurag Kalia ◽  
...  

AbstractUnderstanding the causes of the diverse outcome of COVID-19 pandemic in different geographical locations is important for the vaccine implementation and pandemic control responses. Here, we examined the SARS-CoV-2-specific CD4+ T-cell responses in unexposed individuals and patients recovered from mild COVID-19. Using HLA class II predicted peptide megapools, we identified SARS-CoV-2 cross-reactive CD4+ T cells in around 70% of the unexposed individuals. Moreover, we found detectable immune reactivity up to 5 months in mild COVID-19 recovered patients in the two major arms of protective adaptive immunity; CD4+ T cells and B cells. Interestingly, the persistent immune reactivity in COVID-19 patients is predominantly targeted towards the Spike glycoprotein of the SARS-CoV-2. This study provides the evidence of both high magnitude pre-existing and persistent immune memory in Indian population. By providing the knowledge on cellular immune responses to SARS-CoV-2, our work has implication for the evaluation and implementation of vaccines against COVID-19.


2021 ◽  
Vol 12 ◽  
Author(s):  
Asgar Ansari ◽  
Rakesh Arya ◽  
Shilpa Sachan ◽  
Someshwar Nath Jha ◽  
Anurag Kalia ◽  
...  

Understanding the causes of the diverse outcome of COVID-19 pandemic in different geographical locations is important for the worldwide vaccine implementation and pandemic control responses. We analyzed 42 unexposed healthy donors and 28 mild COVID-19 subjects up to 5 months from the recovery for SARS-CoV-2 specific immunological memory. Using HLA class II predicted peptide megapools, we identified SARS-CoV-2 cross-reactive CD4+ T cells in around 66% of the unexposed individuals. Moreover, we found detectable immune memory in mild COVID-19 patients several months after recovery in the crucial arms of protective adaptive immunity; CD4+ T cells and B cells, with a minimal contribution from CD8+ T cells. Interestingly, the persistent immune memory in COVID-19 patients is predominantly targeted towards the Spike glycoprotein of the SARS-CoV-2. This study provides the evidence of both high magnitude pre-existing and persistent immune memory in Indian population. By providing the knowledge on cellular immune responses to SARS-CoV-2, our work has implication for the development and implementation of vaccines against COVID-19.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A352-A352
Author(s):  
Pedro Noronha ◽  
Georgia Paraschoudi ◽  
Eric Sousa ◽  
Jéssica Kamiki ◽  
Patrícia António ◽  
...  

BackgroundSARS-CoV-2 primarily infects the upper and lower airway system, yet also endothelial cells and multiple tissues/organ systems. Anti-SARS-CoV-2 directed cellular immune responses may be deleterious or may confer immune protection – more research is needed in order to link epitope-specific T-cell responses with clinically relevant endpoints.1 Analysis of epitope reactivity in blood from healthy individuals showed pre-existing (CD4+) reactivity most likely due to previous exposure to the common old coronavirus species HCoV-OC43, HCoV-229E, - NL63 or HKU1, or – not mutually exclusive - cross-reactive T-cell responses that would recognize SARS-CoV-2, yet also other non-SARS-CoV-2 targets.2,3 Detailed single cell analysis in PBMCs from patients with COVID-19 showed strong T-cell activation and expansion of TCR gamma – delta T-cells in patients with fast recovery or mild clinical symptoms.4 Previous studies examining antigen-specific T-cell responses in tumor-infiltrating T-cells (TIL) showed that EBV or CMV-specific cellular immune responses in TIL from patients with melanoma or pancreatic cancer. Such virus -specific T-cells may represent ‘bystander’ T-cell activation, yet they may also impact on the quality and quantity of anti-tumor directed immune responses. We tested therefore TIL expanded from 5 patients with gastrointestinal cancer, who underwent elective tumor surgery during the COVID-19 pandemic for recognition of a comprehensive panel of SARS-CoV-2 T-cell epitopes and compared the reactivity, defined by IFN-gamma production to TIL reactivity in TIL harvested from patients in 2018, prior to the pandemic.MethodsA set of 187 individual T-cell epitopes were tested for TIL recognition using 100IU IL-2 and 100 IU IL-15. Different peptide epitopes were selected: i) all epitopes were not shared with the 4 common old coronavirus species, ii) some peptides were unique for SARS-CoV-2, and iii) others were shared with SARS-CoV-1. Antigen targets were either 15 mers or 9mers for MHC class II or class I epitopes, respectively, derived from the nucleocapsid, membrane, spike protein, ORF8 or the ORF3a. The amount of IFN-gamma production was reported as pg/10e4 cells/epitope/5 days. Controls included CMV and EBV peptides.ResultsWe detected strong IFN-gamma production directed against antigenic ‘hotspots’ including the ORF3a, epitopes from the SARS-CoV-2 nucleocapsid and spike protein with a range of 12 up to 30 targets being recognized/TIL.ConclusionsSARS-CoV-2 epitope recognition, defined by IFN production, can be readily detected in TIL from patients who underwent surgery during the pandemic, which is not the case for TIL harvested prior to the circulating SARS-CoV-2. This suggests a broader exposure of individuals to SARS-CoV-2 and shows that SARS-CoV-2 responses may shape the quality and quantity of anti-cancer directed cellular immune responses in patients with solid epithelial malignancies.AcknowledgementsWe thank the Surgery, Pathology and Vivarium Units of Champalimaud Clinical Center (N. Figueiredo, A. Brandl, A. Beltran, M. Castillo, C. Silva ).Ethics ApprovalThis study was approved by the Champalimaud Foundation Ethics Committee.ConsentAll donors provided written consent and the study was approved by the local ethics committee. The study is in compliance with the Declaration of Helsinki.ReferencesGrifoni, A., Weiskopf, D., Ramirez, S. I., Mateus, J., Dan, J. M., Moderbacher, C. R., Rawlings, S. A., Sutherland, A., Premkumar, L., Jadi, R. S., Marrama, D., de Silva, A. M., Frazier, A., Carlin, A. F., Greenbaum, J. A., Peters, B., Krammer, F., Smith, D. M., Crotty, S., & Sette, A. ( 2020). Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell, 181(7), 1489–1501.e15. https://doi.org/10.1016/j.cell.2020.05.015Mateus, J., Grifoni, A., Tarke, A., Sidney, J., Ramirez, S. I., Dan, J. M., Burger, Z. C., Rawlings, S. A., Smith, D. M., Phillips, E., Mallal, S., Lammers, M., Rubiro, P., Quiambao, L., Sutherland, A., Yu, E. D., da Silva Antunes, R., Greenbaum, J., Frazier, A., … Weiskopf, D. ( 2020). Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science, eabd3871. https://doi.org/10.1126/science.abd3871Le Bert, N., Tan, A. T., Kunasegaran, K., Tham, C. Y. L., Hafezi, M., Chia, A., Chng, M. H. Y., Lin, M., Tan, N., Linster, M., Chia, W. N., Chen, M. I.-C., Wang, L.-F., Ooi, E. E., Kalimuddin, S., Tambyah, P. A., Low, J. G.-H., Tan, Y.-J., & Bertoletti, A. ( 2020). SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature, 584(7821), 457–462. https://doi.org/10.1038/s41586-020-2550-zZhang, J., Wang, X., Xing, X. et al. Single-cell landscape of immunological responses in patients with COVID-19. Nat Immunol 2020;21:1107–1118. https://doi.org/10.1038/s41590-020-0762-x


Blood ◽  
2003 ◽  
Vol 101 (3) ◽  
pp. 807-814 ◽  
Author(s):  
James W. Lillard ◽  
Udai P. Singh ◽  
Prosper N. Boyaka ◽  
Shailesh Singh ◽  
Dennis D. Taub ◽  
...  

AbstractMacrophage inflammatory protein-1α (MIP-1α) and MIP-1β are distinct but highly homologous CC chemokines produced by a variety of host cells in response to various external stimuli and share affinity for CCR5. To better elucidate the role of these CC chemokines in adaptive immunity, we have characterized the affects of MIP-1α and MIP-1β on cellular and humoral immune responses. MIP-1α stimulated strong antigen (Ag)–specific serum immunoglobulin G (IgG) and IgM responses, while MIP-1β promoted lower IgG and IgM but higher serum IgA and IgE antibody (Ab) responses. MIP-1α elevated Ag-specific IgG1 and IgG2b followed by IgG2a and IgG3 subclass responses, while MIP-1β only stimulated IgG1 and IgG2b subclasses. Correspondingly, MIP-1β produced higher titers of Ag-specific mucosal secretory IgA Ab levels when compared with MIP-1α. Splenic T cells from MIP-1α– or MIP-1β–treated mice displayed higher Ag-specific Th1 (interferon-γ [IFN-γ]) as well as selective Th2 (interleukin-5 [IL-5] and IL-6) cytokine responses than did T cells from control groups. Interestingly, mucosally derived T cells from MIP-1β–treated mice displayed higher levels of IL-4 and IL-6 compared with MIP-1α–treated mice. However, MIP-1α effectively enhanced Ag-specific cell-mediated immune responses. In correlation with their selective effects on humoral and cellular immune responses, these chemokines also differentially attract CD4+ versus CD8+ T cells and modulate CD40, CD80, and CD86 expressed by B220+ cells as well as CD28, 4-1BB, and gp39 expression by CD4+ and CD8+ T cells in a dose-dependent fashion. Taken together, these studies suggest that these CC chemokines differentially enhance mucosal and serum humoral as well as cellular immune responses.


2017 ◽  
Vol 85 (4) ◽  
Author(s):  
Amy Ellis ◽  
Alexis Balgeman ◽  
Mark Rodgers ◽  
Cassaundra Updike ◽  
Jaime Tomko ◽  
...  

ABSTRACT Nonhuman primates can be used to study host immune responses to Mycobacterium tuberculosis. Mauritian cynomolgus macaques (MCMs) are a unique group of animals that have limited major histocompatibility complex (MHC) genetic diversity, such that MHC-identical animals can be infected with M. tuberculosis. Two MCMs homozygous for the relatively common M1 MHC haplotype were bronchoscopically infected with 41 CFU of the M. tuberculosis Erdman strain. Four other MCMs, which had at least one copy of the M1 MHC haplotype, were infected with a lower dose of 3 CFU M. tuberculosis. All animals mounted similar T-cell responses to CFP-10 and ESAT-6. Two epitopes in CFP-10 were characterized, and the MHC class II alleles restricting them were determined. A third epitope in CFP-10 was identified but exhibited promiscuous restriction. The CFP-10 and ESAT-6 antigenic regions targeted by T cells in MCMs were comparable to those seen in cases of human M. tuberculosis infection. Our data lay the foundation for generating tetrameric molecules to study epitope-specific CD4 T cells in M. tuberculosis-infected MCMs, which may guide future testing of tuberculosis vaccines in nonhuman primates.


Sign in / Sign up

Export Citation Format

Share Document