scholarly journals INO-4800 DNA vaccine induces neutralizing antibodies and T cell activity against global SARS-CoV-2 variants

npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Viviane M. Andrade ◽  
Aaron Christensen-Quick ◽  
Joseph Agnes ◽  
Jared Tur ◽  
Charles Reed ◽  
...  

AbstractGlobal surveillance has identified emerging SARS-CoV-2 variants of concern (VOC) associated with broadened host specificity, pathogenicity, and immune evasion to vaccine-induced immunity. Here we compared humoral and cellular responses against SARS-CoV-2 VOC in subjects immunized with the DNA vaccine, INO-4800. INO-4800 vaccination induced neutralizing antibodies against all variants tested, with reduced levels detected against B.1.351. IFNγ T cell responses were fully maintained against all variants tested.

Author(s):  
Viviane M. Andrade ◽  
Aaron Christensen-Quick ◽  
Joseph Agnes ◽  
Jared Tur ◽  
Charles Reed ◽  
...  

AbstractGlobal surveillance has identified emerging SARS-CoV-2 variants of concern (VOC) associated with broadened host specificity, pathogenicity, and immune evasion to vaccine induced immunity. Here we compared humoral and cellular responses against SARS-CoV-2 VOC in subjects immunized with the DNA vaccine, INO-4800. INO-4800 vaccination induced neutralizing antibodies against all variants tested, with reduced levels detected against B.1.351. IFNγ T cell responses were fully maintained against all variants tested.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S390-S391
Author(s):  
Viviane M Andrade ◽  
Aaron Christensen-Quick ◽  
Joseph Agnes ◽  
Jared Tur ◽  
Charles C Reed ◽  
...  

Abstract Background Global surveillance has identified emerging SARS-CoV-2 variants of concern (VOC) associated with increased transmissibility, disease severity, and resistance to neutralization by current vaccines under emergency use authorization (EUA). Here we assessed cross-immune responses of INO-4800 vaccinated subjects against SARS-CoV-2 VOCs. Methods We used a SARS-CoV-2 IgG ELISA and a pseudo neutralization assay to assess humoral responses, and an IFNγ ELISpot to measure cellular responses against SARS-CoV-2 VOC in subjects immunized with the DNA vaccine, INO-4800. Results IgG binding titers were not impacted between wild-type (WT) and B.1.1.7 or B.1.351 variants. An average 1.9-fold reduction was observed for the P.1 variant in subjects tested at week 8 after receiving two doses of INO-4800 (Figure 1a). We performed a SARS-CoV-2 pseudovirus neutralization assay using sera collected from 13 subjects two weeks after administration of a third dose of either 0.5 mg, 1 mg, or 2 mg of INO-4800. Neutralization was detected against WT and the emerging variants in all samples tested. The mean ID50 titers for the WT, B.1.1.7, B.1.351 and P.1. were 643 (range: 70-729), 295 (range: 46-886), 105 (range: 25-309), and 664 (range: 25-2087), respectively. Compared to WT, there was a 2.1 and 6.9-fold reduction for B.1.1.7 and B.1.351, respectively, while there was no difference between WT and the P.1 variant (Figure 1b). Next, we compared cellular immune responses to WT and SARS-CoV-2 Spike variants elicited by INO-4800 vaccination. We observed similar cellular responses to WT (median = 82.2 IQR = 58.9-205.3), B.1.1.7 (79.4, IQR = 38.9- 179.7), B.1.351 (80, IQR = 40.0-208.6) and P.1 (78.3, IQR = 53.1-177.8) Spike peptides (Figure 2). Conclusion INO-4800 vaccination induced neutralizing antibodies against all variants tested, with reduced levels detected against B.1.351. IFNγ T cell responses were fully maintained against all variants tested. Disclosures Viviane M. Andrade, PhD, Inovio Pharmaceuticals Inc. (Employee) Aaron Christensen-Quick, PhD, Inovio Pharmaceuticals, Inc (Employee) Joseph Agnes, PhD, Inovio (Employee, Shareholder) Jared Tur, PhD, Inovio (Employee) Charles C. Reed, PhD, Inovio Pharmaceuticals (Employee, Shareholder) Richa Kalia, MS, Inovio Pharmaceuticals (Employee, Other Financial or Material Support, I have stock options with Inovio Pharmaceuticals as an employee.) Idania Marrero, MD, PhD, Inovio Pharmaceuticals (Employee, Shareholder) Dustin Elwood, PhD, Inovio Pharmaceuticals (Employee) Katherine Schultheis, MSc, Inovio Pharmaceuticals (Employee) Emma Reuschel, PhD, Inovio Pharmaceuticals (Employee) Trevor McMullan, MSc, Inovio (Shareholder) Patrick Pezzoli, BS, Inovio (Employee) Kimberly A. Kraynyak, PhD, Inovio Pharmaceuticals (Employee, Other Financial or Material Support, Stock options) Albert Sylvester, MS, Inovio (Employee, Shareholder) Mammen P. Mammen Jr., MD, Inovio Pharmaceuticals (Employee) J Joseph Kim, PhD, Inovio (Employee) David Weiner, PhD, Inovio (Board Member, Grant/Research Support, Shareholder, I serve on the SAB in addition to the above activities) Trevor R. F. Smith, PhD, Inovio (Employee, Shareholder) Stephanie Ramos, PhD, Inovio Pharmaceuticals (Employee) Laurent Humeau, PhD, Inovio Pharmaceuticals (Employee) Jean Boyer, PhD, Inovio (Employee) Kate Broderick, PhD, Inovio (Employee)


Viruses ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 507 ◽  
Author(s):  
Christopher A. Gonelli ◽  
Georges Khoury ◽  
Rob J. Center ◽  
Damian F.J. Purcell

A prophylactic vaccine eliciting both broad neutralizing antibodies (bNAbs) to the HIV-1 envelope glycoprotein (Env) and strong T cell responses would be optimal for preventing HIV-1 transmissions. Replication incompetent HIV-1 virus-like particles (VLPs) offer the opportunity to present authentic-structured, virion-associated Env to elicit bNAbs, and also stimulate T cell responses. Here, we optimize our DNA vaccine plasmids as VLP expression vectors for efficient Env incorporation and budding. The original vector that was used in human trials inefficiently produced VLPs, but maximized safety by inactivating RNA genome packaging, enzyme functions that are required for integration into the host genome, and deleting accessory proteins Vif, Vpr, and Nef. These original DNA vaccine vectors generated VLPs with incomplete protease-mediated cleavage of Gag and were irregularly sized. Mutations to restore function within the defective genes revealed that several of the reverse transcriptase (RT) deletions mediated this immature phenotype. Here, we made efficient budding, protease-processed, and mature-form VLPs that resembled infectious virions by introducing alternative mutations that completely removed the RT domain, but preserved most other safety mutations. These VLPs, either expressed from DNA vectors in vivo or purified after expression in vitro, are potentially useful immunogens that can be used to elicit antibody responses that target Env on fully infectious HIV-1 virions.


Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 134
Author(s):  
Zekun Mu ◽  
Barton F. Haynes ◽  
Derek W. Cain

The SARS-CoV-2 pandemic introduced the world to a new type of vaccine based on mRNA encapsulated in lipid nanoparticles (LNPs). Instead of delivering antigenic proteins directly, an mRNA-based vaccine relies on the host’s cells to manufacture protein immunogens which, in turn, are targets for antibody and cytotoxic T cell responses. mRNA-based vaccines have been the subject of research for over three decades as a platform to protect against or treat a variety of cancers, amyloidosis and infectious diseases. In this review, we discuss mRNA-based approaches for the generation of prophylactic and therapeutic vaccines to HIV. We examine the special immunological hurdles for a vaccine to elicit broadly neutralizing antibodies and effective T cell responses to HIV. Lastly, we outline an mRNA-based HIV vaccination strategy based on the immunobiology of broadly neutralizing antibody development.


2011 ◽  
Vol 19 (1) ◽  
pp. 84-95 ◽  
Author(s):  
Jin Huk Choi ◽  
Joe Dekker ◽  
Stephen C. Schafer ◽  
Jobby John ◽  
Craig E. Whitfill ◽  
...  

ABSTRACTThe immune response to recombinant adenoviruses is the most significant impediment to their clinical use for immunization. We test the hypothesis that specific virus-antibody combinations dictate the type of immune response generated against the adenovirus and its transgene cassette under certain physiological conditions while minimizing vector-induced toxicity.In vitroandin vivoassays were used to characterize the transduction efficiency, the T and B cell responses to the encoded transgene, and the toxicity of 1 × 1011adenovirus particles mixed with different concentrations of neutralizing antibodies. Complexes formed at concentrations of 500 to 0.05 times the 50% neutralizing dose (ND50) elicited strong virus- and transgene-specific T cell responses. The 0.05-ND50formulation elicited measurable anti-transgene antibodies that were similar to those of virus alone (P= 0.07). This preparation also elicited very strong transgene-specific memory T cell responses (28.6 ± 5.2% proliferation versus 7.7 ± 1.4% for virus alone). Preexisting immunity significantly reduced all responses elicited by these formulations. Although lower concentrations (0.005 and 0.0005 ND50) of antibody did not improve cellular and humoral responses in naïve animals, they did promote strong cellular (0.005 ND50) and humoral (0.0005 ND50) responses in mice with preexisting immunity. Some virus-antibody complexes may improve the potency of adenovirus-based vaccines in naïve individuals, while others can sway the immune response in those with preexisting immunity. Additional studies with these and other virus-antibody ratios may be useful to predict and model the type of immune responses generated against a transgene in those with different levels of exposure to adenovirus.


2017 ◽  
Vol 8 ◽  
Author(s):  
Juliana de Souza Apostólico ◽  
Victória Alves Santos Lunardelli ◽  
Marcio Massao Yamamoto ◽  
Higo Fernando Santos Souza ◽  
Edecio Cunha-Neto ◽  
...  

2021 ◽  
Author(s):  
Maria Prendecki ◽  
Tina Thomson ◽  
Candice L Clarke ◽  
Paul Martin ◽  
Sarah Gleeson ◽  
...  

Background Attenuated immune responses to mRNA SARS-CoV-2 vaccines have been reported in solid organ transplant recipients. Most studies have assessed serological responses alone, and there is limited immunological data on vector-based vaccines in this population. This study compares the immunogenicity of BNT162b2 with ChAdOx1 in kidney transplant patients, assessing both serological and cellular responses. Methods 920 patients were screened for spike protein antibodies (anti-S) following 2 doses of either BNT162b2 (n=490) or ChAdOx1 (n=430). 106 patients underwent assessment with T-cell ELISpot assays. 65 health care workers were used as a control group. Results Anti-S was detected in 569 (61.8%) patients. Seroconversion rates in infection-naïve patients who received BNT162b2 were higher compared with ChAdOx1, at 269/410 (65.6%) and 156/358 (43.6%) respectively, p<0.0001. Anti-S concentrations were higher following BNT162b, 58(7.1-722) BAU/ml, compared with ChAdOx1, 7.1(7.1-39) BAU/ml, p<0.0001. Calcineurin inhibitor monotherapy, vaccination occurring >1st year post-transplant and receiving BNT162b2 was associated with seroconversion. Only 28/106 (26.4%) of patients had detectable T-cell responses. There was no difference in detection between infection-naïve patients who received BNT162b2, 7/40 (17.5%), versus ChAdOx1, 2/39 (5.1%), p=0.15. There was also no difference in patients with prior infection who received BNT162b2, 8/11 (72.7%), compared with ChAdOx1, 11/16 (68.8%), p=0.83. Conclusions. Enhanced humoral responses were seen with BNT162b2 compared with ChAdOx1 in kidney transplant patients. T-cell responses to both vaccines were markedly attenuated. Clinical efficacy data is still required but immunogenicity data suggests weakened responses to both vaccines in transplant patients, with ChAdOx1 less immunogenic compared with BNT162b2.


2020 ◽  
Author(s):  
J.A. Perry ◽  
J.T. Clark ◽  
J. Gullicksrud ◽  
J. DeLong ◽  
L. Shallberg ◽  
...  

AbstractWhile much is known about the factors that promote the development of diverse Treg cell responses, less is known about the pathways that constrain Treg cell activities. The studies presented here reveal that at homeostasis there is a population of effector Treg cells that express PD-1, and that blockade of PD-L1 or loss of PD-1 results in increased Treg cell activity. In response to infection with the parasite T. gondii, the early production of IFN-γ results in widespread upregulation of PD-L1. Moreover, blockade of PD-L1, whole body deletion of PD-1, or lineage-specific deletion of PD-1 in Foxp3+ cells prevented the loss of the effector Treg cells but resulted in reduced pathogen specific CD4+ T cell responses during infection. Thus, at homeostasis basal PD-L1 expression constrains and tunes the pool of Treg cells, but during infection the upregulation of PD-L1 provides a mechanism to contract the Treg cell population required to maximize the development of pathogen specific CD4+ T cell responses.


PLoS ONE ◽  
2012 ◽  
Vol 7 (9) ◽  
pp. e45267 ◽  
Author(s):  
Rafael Ribeiro Almeida ◽  
Daniela Santoro Rosa ◽  
Susan Pereira Ribeiro ◽  
Vinicius Canato Santana ◽  
Esper Georges Kallás ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document