scholarly journals 578. INO-4800 DNA Vaccine Induces Neutralizing Antibodies and T cell Activity Against Global SARS-CoV-2 Variants

2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S390-S391
Author(s):  
Viviane M Andrade ◽  
Aaron Christensen-Quick ◽  
Joseph Agnes ◽  
Jared Tur ◽  
Charles C Reed ◽  
...  

Abstract Background Global surveillance has identified emerging SARS-CoV-2 variants of concern (VOC) associated with increased transmissibility, disease severity, and resistance to neutralization by current vaccines under emergency use authorization (EUA). Here we assessed cross-immune responses of INO-4800 vaccinated subjects against SARS-CoV-2 VOCs. Methods We used a SARS-CoV-2 IgG ELISA and a pseudo neutralization assay to assess humoral responses, and an IFNγ ELISpot to measure cellular responses against SARS-CoV-2 VOC in subjects immunized with the DNA vaccine, INO-4800. Results IgG binding titers were not impacted between wild-type (WT) and B.1.1.7 or B.1.351 variants. An average 1.9-fold reduction was observed for the P.1 variant in subjects tested at week 8 after receiving two doses of INO-4800 (Figure 1a). We performed a SARS-CoV-2 pseudovirus neutralization assay using sera collected from 13 subjects two weeks after administration of a third dose of either 0.5 mg, 1 mg, or 2 mg of INO-4800. Neutralization was detected against WT and the emerging variants in all samples tested. The mean ID50 titers for the WT, B.1.1.7, B.1.351 and P.1. were 643 (range: 70-729), 295 (range: 46-886), 105 (range: 25-309), and 664 (range: 25-2087), respectively. Compared to WT, there was a 2.1 and 6.9-fold reduction for B.1.1.7 and B.1.351, respectively, while there was no difference between WT and the P.1 variant (Figure 1b). Next, we compared cellular immune responses to WT and SARS-CoV-2 Spike variants elicited by INO-4800 vaccination. We observed similar cellular responses to WT (median = 82.2 IQR = 58.9-205.3), B.1.1.7 (79.4, IQR = 38.9- 179.7), B.1.351 (80, IQR = 40.0-208.6) and P.1 (78.3, IQR = 53.1-177.8) Spike peptides (Figure 2). Conclusion INO-4800 vaccination induced neutralizing antibodies against all variants tested, with reduced levels detected against B.1.351. IFNγ T cell responses were fully maintained against all variants tested. Disclosures Viviane M. Andrade, PhD, Inovio Pharmaceuticals Inc. (Employee) Aaron Christensen-Quick, PhD, Inovio Pharmaceuticals, Inc (Employee) Joseph Agnes, PhD, Inovio (Employee, Shareholder) Jared Tur, PhD, Inovio (Employee) Charles C. Reed, PhD, Inovio Pharmaceuticals (Employee, Shareholder) Richa Kalia, MS, Inovio Pharmaceuticals (Employee, Other Financial or Material Support, I have stock options with Inovio Pharmaceuticals as an employee.) Idania Marrero, MD, PhD, Inovio Pharmaceuticals (Employee, Shareholder) Dustin Elwood, PhD, Inovio Pharmaceuticals (Employee) Katherine Schultheis, MSc, Inovio Pharmaceuticals (Employee) Emma Reuschel, PhD, Inovio Pharmaceuticals (Employee) Trevor McMullan, MSc, Inovio (Shareholder) Patrick Pezzoli, BS, Inovio (Employee) Kimberly A. Kraynyak, PhD, Inovio Pharmaceuticals (Employee, Other Financial or Material Support, Stock options) Albert Sylvester, MS, Inovio (Employee, Shareholder) Mammen P. Mammen Jr., MD, Inovio Pharmaceuticals (Employee) J Joseph Kim, PhD, Inovio (Employee) David Weiner, PhD, Inovio (Board Member, Grant/Research Support, Shareholder, I serve on the SAB in addition to the above activities) Trevor R. F. Smith, PhD, Inovio (Employee, Shareholder) Stephanie Ramos, PhD, Inovio Pharmaceuticals (Employee) Laurent Humeau, PhD, Inovio Pharmaceuticals (Employee) Jean Boyer, PhD, Inovio (Employee) Kate Broderick, PhD, Inovio (Employee)

Author(s):  
Viviane M. Andrade ◽  
Aaron Christensen-Quick ◽  
Joseph Agnes ◽  
Jared Tur ◽  
Charles Reed ◽  
...  

AbstractGlobal surveillance has identified emerging SARS-CoV-2 variants of concern (VOC) associated with broadened host specificity, pathogenicity, and immune evasion to vaccine induced immunity. Here we compared humoral and cellular responses against SARS-CoV-2 VOC in subjects immunized with the DNA vaccine, INO-4800. INO-4800 vaccination induced neutralizing antibodies against all variants tested, with reduced levels detected against B.1.351. IFNγ T cell responses were fully maintained against all variants tested.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Viviane M. Andrade ◽  
Aaron Christensen-Quick ◽  
Joseph Agnes ◽  
Jared Tur ◽  
Charles Reed ◽  
...  

AbstractGlobal surveillance has identified emerging SARS-CoV-2 variants of concern (VOC) associated with broadened host specificity, pathogenicity, and immune evasion to vaccine-induced immunity. Here we compared humoral and cellular responses against SARS-CoV-2 VOC in subjects immunized with the DNA vaccine, INO-4800. INO-4800 vaccination induced neutralizing antibodies against all variants tested, with reduced levels detected against B.1.351. IFNγ T cell responses were fully maintained against all variants tested.


2021 ◽  
Author(s):  
Charles C Reed ◽  
Katherine Schultheis ◽  
Viviane M Andrade ◽  
Richa Kalia ◽  
Jared Tur ◽  
...  

First generation COVID-19 vaccines matched to the original Wuhan-Hu-1 (WT) strain are showing reduced efficacy against emerging SARS-CoV-2 variants of concern (VOC). In response, next generation vaccines either matched to a single variant or designed to provide broader coverage across the VOC group are being developed. The latter pan-SARS-CoV-2 approach may offer substantial advantages in terms of cross-strain protection, immune coverage, reduced susceptibility to escape mutants, and non-restricted geographical use. Here we have employed our SynCon® design technology to construct a DNA vaccine expressing a pan-Spike immunogen (INO-4802) to induce broad immunity across SARS-CoV-2 variants. Compared to WT and VOC-matched vaccines which showed limited cross-neutralizing activity, INO-4802 induced potent neutralizing antibodies and T cell responses against WT as well as B.1.1.7, P.1, and B.1.351 VOCs in a murine model. In addition, a hamster vaccination model showed enhanced humoral responses against VOCs in a heterologous pWT prime/INO-4802 boost setting. These results demonstrate the potential of the pan-SARS-CoV-2 vaccine, INO-4802 to induce cross-reactive immune responses against emerging VOCs as either a standalone vaccine, or as a potential boost for individuals previously immunized with WT-matched vaccines.


2011 ◽  
Vol 19 (1) ◽  
pp. 84-95 ◽  
Author(s):  
Jin Huk Choi ◽  
Joe Dekker ◽  
Stephen C. Schafer ◽  
Jobby John ◽  
Craig E. Whitfill ◽  
...  

ABSTRACTThe immune response to recombinant adenoviruses is the most significant impediment to their clinical use for immunization. We test the hypothesis that specific virus-antibody combinations dictate the type of immune response generated against the adenovirus and its transgene cassette under certain physiological conditions while minimizing vector-induced toxicity.In vitroandin vivoassays were used to characterize the transduction efficiency, the T and B cell responses to the encoded transgene, and the toxicity of 1 × 1011adenovirus particles mixed with different concentrations of neutralizing antibodies. Complexes formed at concentrations of 500 to 0.05 times the 50% neutralizing dose (ND50) elicited strong virus- and transgene-specific T cell responses. The 0.05-ND50formulation elicited measurable anti-transgene antibodies that were similar to those of virus alone (P= 0.07). This preparation also elicited very strong transgene-specific memory T cell responses (28.6 ± 5.2% proliferation versus 7.7 ± 1.4% for virus alone). Preexisting immunity significantly reduced all responses elicited by these formulations. Although lower concentrations (0.005 and 0.0005 ND50) of antibody did not improve cellular and humoral responses in naïve animals, they did promote strong cellular (0.005 ND50) and humoral (0.0005 ND50) responses in mice with preexisting immunity. Some virus-antibody complexes may improve the potency of adenovirus-based vaccines in naïve individuals, while others can sway the immune response in those with preexisting immunity. Additional studies with these and other virus-antibody ratios may be useful to predict and model the type of immune responses generated against a transgene in those with different levels of exposure to adenovirus.


Author(s):  
Felix G. Delgado ◽  
Karina I. Torres ◽  
Jaime E. Castellanos ◽  
Consuelo Romero-Sánchez ◽  
Etienne Simon-Lorière ◽  
...  

The high level of dengue virus (DENV) seroprevalence in areas where Zika virus (ZIKV) is circulating and the cross-reactivity between these two viruses have raised concerns on the risk of increased ZIKV disease severity for patients with a history of previous DENV infection. To determine the role of DENV pre-immunity in ZIKV infection, we analysed the T and B cell responses against ZIKV in donors with or without previous DENV infection. Using PBMCs from donors living in an endemic area in Colombia, we have identified, by interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) assay, most of the immunodominant ZIKV T-cell epitopes in the non-structural proteins NS1, NS3 and NS5. Analyses of the T and B-cell responses in the same donors revealed a stronger T-cell response against peptides conserved between DENV and ZIKV, with a higher level of ZIKV-neutralizing antibodies in DENV-immune donors, in comparison with DENV-naïve donors. Strikingly, the potential for antibody mediated enhancement of ZIKV infection was reduced in donors with sequential DENV and ZIKV infection in comparison with donors with DENV infection only. Altogether, these data suggest that individuals with DENV immunity present improved immune responses against ZIKV.


2019 ◽  
Vol 32 (1) ◽  
pp. 57-68 ◽  
Author(s):  
Jose E Aguirre ◽  
Ellen J Beswick ◽  
Carl Grim ◽  
Gabriela Uribe ◽  
Marissa Tafoya ◽  
...  

Abstract Increased T helper (Th)1/Th17 immune responses are a hallmark of Crohn’s disease (CD) immunopathogenesis. CD90+ (myo-)fibroblasts (MFs) are abundant cells in the normal (N) intestinal mucosa contributing to mucosal tolerance via suppression of Th1 cell activity through cell surface membrane-bound PD-L1 (mPD-L1). CD-MFs have a decreased level of mPD-L1. Consequently, mPD-L1-mediated suppression of Th1 cells by CD-MFs is decreased, yet the mechanism responsible for the reduction in mPDL-1 is unknown. Increased expression of matrix metalloproteinases (MMPs) has been reported in CD. Herein we observed that when compared to N- and ulcerative colitis (UC)-MFs, CD-MFs increase in LPS-inducible levels of MMP-7 and -9 with a significant increase in both basal and inducible MMP-10. A similar pattern of MMP expression was observed in the CD-inflamed mucosa. Treatment of N-MFs with a combination of recombinant human MMP-7, -9 and -10 significantly decreased mPD-L1. In contrast, inhibition of MMP activity with MMP inhibitors or anti-MMP-10 neutralizing antibodies restores mPD-L1 on CD-MFs. CD-MFs demonstrated reduced capacity to suppress Th1 and Th17 responses from activated CD4+ T cells. By contrast, supplementation of the CD-MF:T-cell co-cultures with MMP inhibitors or anti-MMP neutralizing antibodies restored the CD-MF-mediated suppression. Our data suggest that (i) increased MMP-10 expression by CD-MFs and concomitant cleavage of PD-L1 from the surface of CD-MFs are likely to be one of the factors contributing to the decrease of mPD-L1-mediated suppression of Th1/Th17 cells in CD; and (ii) MMPs are likely to have a significant role in the intestinal mucosal immune responses.


2010 ◽  
Vol 17 (10) ◽  
pp. 1576-1583 ◽  
Author(s):  
Mariana O. Diniz ◽  
Marcio O. Lasaro ◽  
Hildegund C. Ertl ◽  
Luís C. S. Ferreira

ABSTRACT Recombinant adenovirus or DNA vaccines encoding herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) genetically fused to human papillomavirus type 16 (HPV-16) oncoproteins (E5, E6, and E7) induce antigen-specific CD8+ T-cell responses and confer preventive resistance to transplantable murine tumor cells (TC-1 cells). In the present report, we characterized some previously uncovered aspects concerning the induction of CD8+ T-cell responses and the therapeutic anticancer effects achieved in C57BL/6 mice immunized with pgD-E7E6E5 previously challenged with TC-1 cells. Concerning the characterization of the immune responses elicited in mice vaccinated with pgD-E7E6E5, we determined the effect of the CD4+ T-cell requirement, longevity, and dose-dependent activation on the E7-specific CD8+ T-cell responses. In addition, we determined the priming/boosting properties of pgD-E7E6E5 when used in combination with a recombinant serotype 68 adenovirus (AdC68) vector encoding the same chimeric antigen. Mice challenged with TC-1 cells and then immunized with three doses of pgD-E7E6E5 elicited CD8+ T-cell responses, measured by intracellular gamma interferon (IFN-γ) and CD107a accumulation, to the three HPV-16 oncoproteins and displayed in vivo antigen-specific cytolytic activity, as demonstrated with carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled target cells pulsed with oligopeptides corresponding to the H-2Db -restricted immunodominant epitopes of the E7, E6, or E5 oncoprotein. Up to 70% of the mice challenged with 5 × 105 TC-1 cells and immunized with pgD-E7E6E5 controlled tumor development even after 3 days of tumor cell challenge. In addition, coadministration of pgD-E7E6E5 with DNA vectors encoding pGM-CSF or interleukin-12 (IL-12) enhanced the therapeutic antitumor effects for all mice challenged with TC-1 cells. In conclusion, the present results expand our previous knowledge on the immune modulation properties of the pgD-E7E6E5 vector and demonstrate, for the first time, the strong antitumor effects of the DNA vaccine, raising promising perspectives regarding the development of immunotherapeutic reagents for the control of HPV-16-associated tumors.


Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 284 ◽  
Author(s):  
Phoebe E. Lewis ◽  
Ethan C. Poteet ◽  
Dongliang Liu ◽  
Changyi Chen ◽  
Celia C. LaBranche ◽  
...  

Studies have shown that blockade of CTLA-4 promoted the expansion of germinal center B-cells in viral infection or immunization with model antigens. Few studies have evaluated the immunological consequences of CTLA-4 blockade during immunization against relevant vaccine candidates. Here, we investigated the effects of CTLA-4 blockade on HIV virus-like particles (VLPs) vaccination in a C57BL/6J mouse model. We found that CTLA-4 blockade during HIV VLP immunization resulted in increased CD4+ T-cell activation, promoted the expansion of HIV envelope (Env)-specific follicular helper T cell (Tfh) cells, and significantly increased HIV Gag- and Env-specific IgG with higher avidity and antibody-dependent cellular cytotoxicity (ADCC) capabilities. Furthermore, after only a single immunization, CTLA-4 blockade accelerated T-cell dependent IgG class switching and the induction of significantly high serum levels of the B-cell survival factor, A proliferation-inducing ligand (APRIL). Although no significant increase in neutralizing antibodies was observed, increased levels of class-switched Env- and Gag-specific IgG are indicative of increased polyclonal B-cell activation, which demonstrated the ability to mediate and enhance ADCC in this study. Altogether, our findings show that CTLA-4 blockade can increase the levels of HIV antigen-specific B-cell and antigen-specific Tfh cell activity and impact humoral immune responses when combined with a clinically relevant HIV VLP-based vaccine.


2013 ◽  
Vol 31 (6_suppl) ◽  
pp. 135-135 ◽  
Author(s):  
Douglas G. McNeel ◽  
Jordan T. Becker ◽  
Jens C. Eickhoff ◽  
Laura E. Johnson ◽  
Glenn Liu ◽  
...  

135 Background: We have previously reported a phase I/II trial with a DNA vaccine encoding PAP in patients with stage M0 CaP. Vaccination was found to be safe and immunologically active. Th1-biased PAP-specific immune responses were associated with increases in PSA doubling time (DT). In the current trial, we sought to evaluate the immunological efficacy of immunizations performed over a 1-2-year period of time, with the goal of identifying a preferred schedule. Methods: Patients (pts) were randomized to a schedule of 6 immunizations at 2-wk intervals followed by quarterly booster immunizations, or a schedule determined by frequent immune monitoring. Immune monitoring was by IFNγ and granzyme B ELISPOT and antigen-specific T-cell proliferation. Pts continued immunization until evidence of radiographic progression, toxicity, two years, or 24 total immunizations, whichever occurred first. Results: 17 pts were enrolled, of whom 11 completed at least 1 year on treatment, and 4 completed 2 years. 3 pts remain on study. 1 pt experienced a grade 3 allergic reaction (angioedema) after 11 immunizations; no other events > grade 2 were observed. 6/16 evaluable pts developed durable immune responses, defined as statistically significant PAP-specific T-cell responses by at least two separate measures that were at least 3-fold the baseline response and detectable at >1 post-treatment time point. 2 pts in the immune-monitoring arm developed immune responses after 6 immunizations that were detectable at each quarterly time point up to 2 years. 5/15 evaluable pts were observed to have a >3-fold increase in PSA DT; the 2 with the greatest increase in PSA DT developed PAP-specific IFNγ-secreting T cells detectable at multiple time points after immunization. Conclusions: Repetitive immunization with this vaccine appears safe and immunologically active. Presence of durable Th1-biased antigen-specific immune responses is a mechanistically rational biomarker, and may be associated with favorable increases in PSA DT observed in 2 separate trials. Impact of vaccination on time to radiographic disease progression awaits results from an ongoing randomized clinical trial. Clinical trial information: NCT00849121.


2017 ◽  
Vol 91 (10) ◽  
Author(s):  
Jorma Hinkula ◽  
Stéphanie Devignot ◽  
Sara Åkerström ◽  
Helen Karlberg ◽  
Eva Wattrang ◽  
...  

ABSTRACT Crimean-Congo hemorrhagic fever virus (CCHFV) is a bunyavirus causing severe hemorrhagic fever disease in humans, with high mortality rates. The requirement of a high-containment laboratory and the lack of an animal model hampered the study of the immune response and protection of vaccine candidates. Using the recently developed interferon alpha receptor knockout (IFNAR−/−) mouse model, which replicates human disease, we investigated the immunogenicity and protection of two novel CCHFV vaccine candidates: a DNA vaccine encoding a ubiquitin-linked version of CCHFV Gc, Gn, and N and one using transcriptionally competent virus-like particles (tc-VLPs). In contrast to most studies that focus on neutralizing antibodies, we measured both humoral and cellular immune responses. We demonstrated a clear and 100% efficient preventive immunity against lethal CCHFV challenge with the DNA vaccine. Interestingly, there was no correlation with the neutralizing antibody titers alone, which were higher in the tc-VLP-vaccinated mice. However, the animals with a lower neutralizing titer, but a dominant cell-mediated Th1 response and a balanced Th2 response, resisted the CCHFV challenge. Moreover, we found that in challenged mice with a Th1 response (immunized by DNA/DNA and boosted by tc-VLPs), the immune response changed to Th2 at day 9 postchallenge. In addition, we were able to identify new linear B-cell epitope regions that are highly conserved between CCHFV strains. Altogether, our results suggest that a predominantly Th1-type immune response provides the most efficient protective immunity against CCHFV challenge. However, we cannot exclude the importance of the neutralizing antibodies as the surviving immunized mice exhibited substantial amounts of them. IMPORTANCE Crimean-Congo hemorrhagic fever virus (CCHFV) is responsible for hemorrhagic diseases in humans, with a high mortality rate. There is no FDA-approved vaccine, and there are still gaps in our knowledge of the immune responses to infection. The recently developed mouse models mimic human CCHF disease and are useful to study the immunogenicity and the protection by vaccine candidates. Our study shows that mice vaccinated with a specific DNA vaccine were fully protected. Importantly, we show that neutralizing antibodies are not sufficient for protection against CCHFV challenge but that an extra Th1-specific cellular response is required. Moreover, we describe the identification of five conserved B-cell epitopes, of which only one was previously known, that could be of great importance for the development of diagnostics tools and the improvement of vaccine candidates.


Sign in / Sign up

Export Citation Format

Share Document