scholarly journals Optimal Control Strategies for Switchable Transparent Insulation Systems Applied to Smart Windows for US Residential Buildings

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2917
Author(s):  
Mohammad Dabbagh ◽  
Moncef Krarti

This paper evaluates the potential energy use and peak demand savings associated with optimal controls of switchable transparent insulation systems (STIS) applied to smart windows for US residential buildings. The optimal controls are developed based on Genetic Algorithm (GA) to identify the automatic settings of the dynamic shades. First, switchable insulation systems and their operation mechanisms are briefly described when combined with smart windows. Then, the GA-based optimization approach is outlined to operate switchable insulation systems applied to windows for a prototypical US residential building. The optimized controls are implemented to reduce heating and cooling energy end-uses for a house located four US locations, during three representative days of swing, summer, and winter seasons. The performance of optimal controller is compared to that obtained using simplified rule-based control sets to operate the dynamic insulation systems. The analysis results indicate that optimized controls of STISs can save up to 81.8% in daily thermal loads compared to the simplified rule-set especially when dwellings are located in hot climates such as that of Phoenix, AZ. Moreover, optimally controlled STISs can reduce electrical peak demand by up to 49.8% compared to the simplified rule-set, indicating significant energy efficiency and demand response potentials of the SIS technology when applied to US residential buildings.

Author(s):  
Ammar H. A. Dehwah ◽  
Moncef Krarti

Abstract Switchable building envelope systems, including passive and active systems, have recently seen an increase interest in the literature. Unlike static insulation, switchable insulation systems (SISs) have the ability to adjust the thermal properties of envelope elements. Advanced control strategies for SISs are evaluated in this analysis using genetic algorithm-based optimization techniques. In particular, this study investigates the potential heating and cooling energy savings for deploying optimal controls specific to SIS technologies when applied to residential roofs located in representative US climates. Moreover, energy use and peak demand savings obtained by optimal controls are compared with those obtained from the 2-step rule-based controls. Overall, the analysis results indicate that the maximum monthly additional savings obtained by optimal controls can reach up to 32% compared with 2-step rule sets when an annual analysis is conducted for a residential building located in Golden, CO.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3876
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Aiman Albatayneh ◽  
Patrick Dutournie ◽  
...  

Since buildings are one of the major contributors to global warming, efforts should be intensified to make them more energy-efficient, particularly existing buildings. This research intends to analyze the energy savings from a suggested retrofitting program using energy simulation for typical existing residential buildings. For the assessment of the energy retrofitting program using computer simulation, the most commonly utilized residential building types were selected. The energy consumption of those selected residential buildings was assessed, and a baseline for evaluating energy retrofitting was established. Three levels of retrofitting programs were implemented. These levels were ordered by cost, with the first level being the least costly and the third level is the most expensive. The simulation models were created for two different types of buildings in three different climatic zones in Palestine. The findings suggest that water heating, space heating, space cooling, and electric lighting are the highest energy consumers in ordinary houses. Level one measures resulted in a 19–24 percent decrease in energy consumption due to reduced heating and cooling loads. The use of a combination of levels one and two resulted in a decrease of energy consumption for heating, cooling, and lighting by 50–57%. The use of the three levels resulted in a decrease of 71–80% in total energy usage for heating, cooling, lighting, water heating, and air conditioning.


Author(s):  
Jerzy Sowa ◽  
Maciej Mijakowski

A humidity-sensitive demand-controlled ventilation system is known for many years. It has been developed and commonly applied in regions with an oceanic climate. Some attempts were made to introduce this solution in Poland in a much severe continental climate. The article evaluates this system's performance and energy consumption applied in an 8-floor multi-unit residential building, virtual reference building described by the National Energy Conservation Agency NAPE, Poland. The simulations using the computer program CONTAM were performed for the whole hating season for Warsaw's climate. Besides passive stack ventilation that worked as a reference, two versions of humidity-sensitive demand-controlled ventilation were checked. The difference between them lies in applying the additional roof fans that convert the system to hybrid. The study confirmed that the application of demand-controlled ventilation in multi-unit residential buildings in a continental climate with warm summer (Dfb) leads to significant energy savings. However, the efforts to ensure acceptable indoor air quality require hybrid ventilation, which reduces the energy benefits. It is especially visible when primary energy use is analyzed.


Environments ◽  
2018 ◽  
Vol 5 (11) ◽  
pp. 118 ◽  
Author(s):  
Ignacio Martin-Dominguez ◽  
Norma Rodriguez-Muñoz ◽  
Claudia Romero-Perez ◽  
Mario Najera-Trejo ◽  
Naghelli Ortega-Avila

In Mexico, residents of low income housing mainly achieve thermal comfort through mechanical ventilation and electrical air conditioning systems. Though government and private efforts have risen to meet an increasing demand for social housing, the average construction quality and thermal comfort of new housing stock has decreased over the years. Various programs and regulations have been implemented to address these concerns, including the 2011 residential building standard NOM-020-ENER-2011. This standard attempts to limit heat gains in residential buildings, in order to reduce the energy consumption required from cooling systems, and was intended to be applied throughout Mexico. NOM-020-ENER-2011, however, divides the country into just four climatic zones and only considers the energy use of cooling systems, disregarding heating costs. The recommendations of this policy are thus inadequate for the many regions in Mexico that have mild to moderate winters. This study discusses the assumptions and calculations that underlie NOM-020-ENER-2011, identifying several problems and recommending specific changes to the standard that would lead to greater comfort and lower energy use throughout Mexico.


Solar Energy ◽  
2006 ◽  
Author(s):  
Jayme Dark ◽  
Moncef Krarti

As part of a utility program to explore implementation of demand charges and time of use utility rates for residential buildings, impact of commonly used energy efficiency measures on the reduction of electricity demand in residential homes are explored in this paper. The study presented in the paper focus on homes located in the Denver-Boulder area. Detailed energy audit and simulation analyses are conducted to obtain detailed data relevant to energy performance of 13 homes. Simplified analysis method is outlined to estimate the energy use of residential homes as well as electrical peak demand. Moreover, general guidelines are provided to effectively reduce peak demand for homes.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1912 ◽  
Author(s):  
Vasco Granadeiro ◽  
Margarida Almeida ◽  
Tiago Souto ◽  
Vítor Leal ◽  
João Machado ◽  
...  

This work addresses the effect of using thermochromic paints in residential buildings. Two different thermochromic paint types were considered: One that changes properties through a step transition at a certain temperature, and another that changes properties in a gradual/linear manner throughout a temperature range. The studied building was a two-floor villa, virtually simulated through a digital model with and without thermal insulation, and considering thermochromic paints applied both on external walls and on the roof. The performance assessment was done through the energy use for heating and cooling (in conditioned mode), as well as in terms of the indoor temperature (in free-floating mode). Three different cities/climates were considered: Porto, Madrid, and Abu Dhabi. Results showed that energy savings up to 50.6% could be reached if the building is operated in conditioned mode. Conversely, when operated in free-floating mode, optimally selected thermochromic paints enable reductions up to 11.0 °C, during summertime, and an increase up to 2.7 °C, during wintertime. These results point out the great benefits of using optimally selected thermochromic paints for obtaining thermal comfort, and also the need to further develop stable and cost-effective thermochromic pigments for outdoor applications, as well as to test physical models in a real environment.


2018 ◽  
Vol 47 (1) ◽  
pp. 45-64 ◽  
Author(s):  
Anthony Beck ◽  
Gavin Long ◽  
Doreen S Boyd ◽  
Julian F Rosser ◽  
Jeremy Morley ◽  
...  

Estimating residential building energy use across large spatial extents is vital for identifying and testing effective strategies to reduce carbon emissions and improve urban sustainability. This task is underpinned by the availability of accurate models of building stock from which appropriate parameters may be extracted. For example, the form of a building, such as whether it is detached, semi-detached, terraced etc. and its shape may be used as part of a typology for defining its likely energy use. When these details are combined with information on building construction materials or glazing ratio, it can be used to infer the heat transfer characteristics of different properties. However, these data are not readily available for energy modelling or urban simulation. Although this is not a problem when the geographic scope corresponds to a small area and can be hand-collected, such manual approaches cannot be easily applied at the city or national scale. In this article, we demonstrate an approach that can automatically extract this information at the city scale using off-the-shelf products supplied by a National Mapping Agency. We present two novel techniques to create this knowledge directly from input geometry. The first technique is used to identify built form based upon the physical relationships between buildings. The second technique is used to determine a more refined internal/external wall measurement and ratio. The second technique has greater metric accuracy and can also be used to address problems identified in extracting the built form. A case study is presented for the City of Nottingham in the United Kingdom using two data products provided by the Ordnance Survey of Great Britain: MasterMap and AddressBase. This is followed by a discussion of a new categorisation approach for housing form for urban energy assessment.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2888 ◽  
Author(s):  
Linlin Zhao ◽  
Zhansheng Liu ◽  
Jasper Mbachu

Over the last two decades, the residential building sector has been one of the largest energy consumption sectors in New Zealand. The relationship between that sector and household energy consumption should be carefully studied in order to optimize the energy consumption structure and satisfy energy demands. Researchers have made efforts in this field; however, few have concentrated on the association between household energy use and the cost of residential buildings. This study examined the correlation between household energy use and residential building cost. Analysis of the data indicates that they are significantly correlated. Hence, this study proposes time series methods, including the exponential smoothing method and the autoregressive integrated moving average (ARIMA) model for forecasting residential building costs of five categories of residential buildings (one-storey house, two-storey house, townhouse, residential apartment and retirement village building) in New Zealand. Moreover, the artificial neutral networks (ANNs) model was used to forecast the future usage of three types of household energy (electricity, gas and petrol) using the residential building costs. The t-test was used to validate the effectiveness of the obtained ANN models. The results indicate that the ANN models can generate acceptable forecasts. The primary contributions of this paper are twofold: (1) Identify the close correlation between household energy use and residential building costs; (2) provide a new clue for optimizing energy management.


2005 ◽  
Vol 37 (1) ◽  
pp. 3-19 ◽  
Author(s):  
F Gugliermetti ◽  
F Bisegna

Luminous environment apects related to the integration of control systems with ElectroChromic (EC) windows for non-residential buildings are analyzed. On/off and linear control strategies to reverse the EC transparency from the bleached to the coloured state, integrated with dimming and on/off artificial light control systems, are investigated as regards visual aspects. Different EC window systems are compared with a double sheet glass system equipped with different internal shading for some Italian cities in typical Mediterranean geographic areas. An integrated energy analysis program, IENUS (Integrated Energy Use Simulation), that simulates hourly thermal and luminous aspects on the base of TMYs (Typical Meteorological Years) is used as a work tool.


2015 ◽  
Vol 77 (16) ◽  
Author(s):  
Jibrin Hassan Suleiman ◽  
Ali Keyvanfar ◽  
Rosli Mohamad Zin ◽  
Saeed Balubaid ◽  
Shaiful Amri Mansur

The building sector is widely known for its greenhouse gas and carbon emission which is very significant to the global warming as observed in recent years. Many research works highlighted that buildings has a negative impact on the society as it consumes up to 80% of the total energy used during operation stage. In Malaysia, electricity energy consumption in buildings is 63,354GWh out of the total 116,353GWh of total energy consumed in the country in the year 2012. This paper consider the understanding level of the residential owners in their building energy usage at their various residential buildings. Energy use by household varies widely, this is due to the living standard of a country, type of buildings and climate condition of the region. The study is based on the tips and guides to energy efficiency at home of the Sustainable Energy Development Authority (SEDA) Malaysia. Data was collected through a questionnaire survey form and was analyzed using regression analysis, the results indicates that the occupants have little or no proper understanding of Air-condition, Home appliance and Lighting appliances.


Sign in / Sign up

Export Citation Format

Share Document