scholarly journals Circadian rhythms and the gut microbiota: from the metabolic syndrome to cancer

2020 ◽  
Vol 16 (12) ◽  
pp. 731-739 ◽  
Author(s):  
Faraz Bishehsari ◽  
Robin M. Voigt ◽  
Ali Keshavarzian
2022 ◽  
Vol 11 (1) ◽  
pp. 11-21
Author(s):  
Hui Ma ◽  
Yaozhong Hu ◽  
Bowei Zhang ◽  
Zeping Shao ◽  
Eugeni Roura ◽  
...  

2020 ◽  
Vol 111 (4) ◽  
pp. 864-876
Author(s):  
Anne K Eriksen ◽  
Carl Brunius ◽  
Mohsen Mazidi ◽  
Per M Hellström ◽  
Ulf Risérus ◽  
...  

ABSTRACT Background A whole-grain (WG)–rich diet has shown to have potential for both prevention and treatment of the metabolic syndrome (MetS), which is a cluster of risk factors that increase the risk of type 2 diabetes and cardiovascular disease. Different WGs may have different health effects. WG rye, in particular, may improve glucose homeostasis and blood lipids, possibly mediated through fermentable dietary fiber and lignans. Recent studies have also suggested a crucial role of the gut microbiota in response to WG. Objectives The aim was to investigate WG rye, alone and with lignan supplements [secoisolariciresinol diglucoside (SDG)], and WG wheat diets on glucose tolerance [oral-glucose-tolerance test (OGTT)], other cardiometabolic outcomes, enterolignans, and microbiota composition. Moreover, we exploratively evaluated the role of gut microbiota enterotypes in response to intervention diets. Methods Forty men with MetS risk profile were randomly assigned to WG diets in an 8-wk crossover study. The rye diet was supplemented with 280 mg SDG at weeks 4–8. Effects of treatment were evaluated by mixed-effects modeling, and effects on microbiota composition and the role of gut microbiota as a predictor of response to treatment were analyzed by random forest plots. Results The WG rye diet (± SDG supplements) did not affect the OGTT compared with WG wheat. Total and LDL cholesterol were lowered (−0.06 and −0.09 mmol/L, respectively; P < 0.05) after WG rye compared with WG wheat after 4 wk but not after 8 wk. WG rye resulted in higher abundance of Bifidobacterium [fold-change (FC) = 2.58, P < 0.001] compared with baseline and lower abundance of Clostridium genus compared with WG wheat (FC = 0.54, P = 0.02). The explorative analyses suggest that baseline enterotype is associated with total and LDL-cholesterol response to diet. Conclusions WG rye, alone or with SDG supplementation, compared with WG wheat did not affect glucose metabolism but caused transient LDL-cholesterol reduction. The effect of WG diets appeared to differ according to enterotype. This trial was registered at www.clinicaltrials.gov as NCT02987595.


2018 ◽  
Vol 315 (4) ◽  
pp. E511-E519 ◽  
Author(s):  
Ty T. Kim ◽  
Nirmal Parajuli ◽  
Miranda M. Sung ◽  
Suresh C. Bairwa ◽  
Jody Levasseur ◽  
...  

Oral administration of resveratrol attenuates several symptoms associated with the metabolic syndrome, such as impaired glucose homeostasis and hypertension. Recent work has shown that resveratrol can improve glucose homeostasis in obesity via changes in the gut microbiota. Studies involving fecal microbiome transplants (FMTs) suggest that either live gut microbiota or bacterial-derived metabolites from resveratrol ingestion are responsible for producing the observed benefits in recipients. Herein, we show that obese mice receiving FMTs from healthy resveratrol-fed mice have improved glucose homeostasis within 11 days of the first transplant, and that resveratrol-FMTs is more efficacious than oral supplementation of resveratrol for the same duration. The effects of FMTs from resveratrol-fed mice are also associated with decreased inflammation in the colon of obese recipient mice. Furthermore, we show that sterile fecal filtrates from resveratrol-fed mice are sufficient to improve glucose homeostasis in obese mice, demonstrating that nonliving bacterial, metabolites, or other components within the feces of resveratrol-fed mice are sufficient to reduce intestinal inflammation. These postbiotics may be an integral mechanism by which resveratrol improves hyperglycemia in obesity. Resveratrol-FMTs also reduced the systolic blood pressure of hypertensive mice within 2 wk of the first transplant, indicating that the beneficial effects of resveratrol-FMTs may also assist with improving cardiovascular conditions associated with the metabolic syndrome.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1870
Author(s):  
Bao-Hong Lee ◽  
Chia-Hsiu Chen ◽  
Yi-Yun Hsu ◽  
Pei-Ting Chuang ◽  
Ming-Kuei Shih ◽  
...  

Polysaccharides isolated from fungus Cordyceps militaris display multi-biofunctions, such as immunostimulation, down-regulation of hyperlipidemia, and anti-cancer function. The occurrence of obesity and metabolic syndrome is related to the imbalance of gut microbiota. In this study, the effects of C. militaris and its fractions on modifying metabolic syndrome in mice were evaluated. Mice were fed a high-fat/high-sucrose diet (HFSD) for 14 weeks to induce body weight increase and hyperlipidemia symptoms in mice, and then the mice were simultaneously given a HFSD and C. militaris samples for a further 8 weeks. The results indicated that the fruit body, polysaccharides, and cordycepin obtained from C. militaris had different efficacies on regulating metabolic syndrome and gut microbiota in HFSD-treated mice. Polysaccharides derived from C. militaris decreased the levels of blood sugar and serum lipids in mice fed HFSD. In addition, C. militaris-polysaccharide treatment obviously improved intestinal dysbiosis through promoting the population of next generation probiotic Akkermansia muciniphila in the gut of mice fed HFSD. In conclusion, polysaccharides derived from C. militaris have the potential to act as dietary supplements and health food products for modifying the gut microbiota to improve the metabolic syndrome.


2020 ◽  
Vol 27 (2) ◽  
pp. 216-229 ◽  
Author(s):  
Ennio Avolio ◽  
Paola Gualtieri ◽  
Lorenzo Romano ◽  
Claudio Pecorella ◽  
Simona Ferraro ◽  
...  

Background: Obesity is now recognized as a worldwide health issue and has reached epidemic proportions, affecting both developed and developing countries. The World Obesity Federation stated that “Obesity is a chronic relapsing disease process”: as a result, obesity has been recognized internationally as a chronic disease. : The primary cause of the metabolic syndrome and increase of the cardiovascular risk have been identified in "sick fat", a condition then defined as adiposopathy. Heart attacks, strokes and renal failures are pathologies that have mid-risk factors such as dyslipidemia, hypertension and diabetes, which in turn are caused by obesity, whose primary risk factor is represented by the diet. The aim of the present review is to consider the importance of body composition, together with chronic inflammation and a new gut microbiota data that may turn out to be crucial elements of some target treatment of human obesity. Methods: In this review, we performed research using PubMed database reviewing the evidence in the literature of evidence information regarding the link between obesity and body composition in the development of metabolic disease via inflammation markers and in particular, the new role exerted by gut microbiota. Results: Several papers were evaluated searching for differences in fat mass and disease risk. We also identified the same papers dealing with differences in body composition and metabolic syndrome. Our attention focuses also on a new frontier of gut microbiota composition in the body weight decrease and anti-inflammatory effects. Conclusion: To the saving of lean mass, for the prevention of cardiometabolic diseases, also considering the relationship with obesity, it is necessary to reduce the inflammatory state, acting on the gut-microbiota and on the intestinal permeability. To improve the health of the intestinal flora, we propose a 4P medicine and treatment with probiotics, prebiotics, postbiotics, and polyphenols.


2009 ◽  
Vol 5 (7) ◽  
pp. 71-92 ◽  
Author(s):  
Francesca Fava ◽  
Julie A. Lovegrove ◽  
Kieran M. Tuohy ◽  
Glenn R. Gibson

PLoS ONE ◽  
2012 ◽  
Vol 7 (8) ◽  
pp. e43052 ◽  
Author(s):  
Margaret L. Zupancic ◽  
Brandi L. Cantarel ◽  
Zhenqiu Liu ◽  
Elliott F. Drabek ◽  
Kathleen A. Ryan ◽  
...  

2017 ◽  
Vol 8 (4) ◽  
pp. 545-556 ◽  
Author(s):  
K. Lippert ◽  
L. Kedenko ◽  
L. Antonielli ◽  
I. Kedenko ◽  
C. Gemeier ◽  
...  

Obesity and associated metabolic disorders have become highly prevalent diseases worldwide, and the human gut microbiota, due to its influence on host energy metabolism, has been attributed an important role therein. This pilot study explores host-microbiota relationships in men and women affected by various types of glucose metabolism disorder. Among 20 individuals aged 58 to 71 years with either normal glucose tolerance, prediabetes, or type 2 diabetes mellitus the gut bacterial communities were compared based on barcoded 454 sequencing of 16S rRNA genes amplified from stool samples. We found that specific microbiota groups were relatively enriched or reduced in different metabolic states. Further, positive or negative associations with clinical manifestations of metabolic disease suggest that these organisms indicate and possibly contribute to metabolic impairment or health. For instance, a higher prevalence of Erysipelotrichaceae and Lachnospiraceae was found associated with metabolic disorders, and the Holdemania and Blautia genera correlated with clinical indicators of an impaired lipid and glucose metabolism. The Bacteroidetes and groups therein, by contrast, displayed inverse relationships with metabolic disease parameters and were found relatively enriched in participants not diagnosed with metabolic syndrome or obesity. Further, the prevalence of specific Clostridia and Rikenellaceae members also pointed towards a healthier metabolic state. Links with diet as an intermediate factor included positive and negative associations of Lachnospiraceae with relative consumption rates of fat and carbohydrates, respectively, and positive associations of Turicibacteraceae with the consumption of protein. Identifying critical roles of major gut microbiota components in metabolic disorders has important translational implications regarding the prevention and treatment of metabolic diseases by means of preventing or reversing dysbiosis and by controlling exacerbating diet and life style factors particularly in sensitive population groups.


Sign in / Sign up

Export Citation Format

Share Document