scholarly journals Material design for lymph node drug delivery

2019 ◽  
Vol 4 (6) ◽  
pp. 415-428 ◽  
Author(s):  
Alex Schudel ◽  
David M. Francis ◽  
Susan N. Thomas
Author(s):  
Susan N. Thomas

Immunotherapy-based approaches for cancer treatment are of increasing clinical interest. Principles of drug delivery and the emerging field of material design for immunomodulation might hold significant promise for novel approaches in cancer immunotherapy since biomaterials engineering strategies enable enhanced delivery of immune modulatory agents to tissues and cells of the immune system1. One tissue of significant clinical interest in a cancer setting is the tumor-draining lymph node (TDLN), which participates in cancer progression by enabling both metastatic dissemination as well as tumor-induced immune escape. Hence, the TDLN represents a novel target for drug delivery schemes for cancer immunotherapy. We hypothesize that targeted delivery of adjuvants (Adjs) to the TDLN using a biomaterials-based approach might promote antitumor immunity and hinder tumor growth.


2021 ◽  
pp. 153537022110107
Author(s):  
Noah Trac ◽  
Eun Ji Chung

The lymph nodes are major sites of cancer metastasis and immune activity, and thus represent important clinical targets. Although not as well-studied compared to subcutaneous administration, intravenous drug delivery is advantageous for lymph node delivery as it is commonly practiced in the clinic and has the potential to deliver therapeutics systemically to all lymph nodes. However, rapid clearance by the mononuclear phagocyte system, tight junctions of the blood vascular endothelium, and the collagenous matrix of the interstitium can limit the efficiency of lymph node drug delivery, which has prompted research into the design of nanoparticle-based drug delivery systems. In this mini review, we describe the physiological and biological barriers to lymph node targeting, how they inform nanoparticle design, and discuss the future outlook of lymph node targeting.


Author(s):  
Babak Ganjeifar ◽  
Seyyed Farhang Morshed

Background: Despite advances in surgery, radiotherapy and chemotherapy, brain tumors are still a major health issue due to poor prognosis and high mortality rate. The current treatment options suffer limited efficiency. The main barriers to the effective clinical treatment are systemic toxicity of cytotoxic compounds, physical and functional barrier of the blood brain barrier (BBB), and low selectivity of the therapeutic agents to tumor cells. Objective: To review the advances in targeted drug delivery systems and strategies for brain tumors. Methods: We searched the electronic databases of PubMed, EMBASE, Web of Science, BIOSIS Previews, Cambridge Scientific Abstracts, google scholar and additional sources for published and unpublished trials using the set search terms. The date of the most recent search was 20 March 2020. The studies investigating the applications of targeted drug delivery for brain tumors were collected and the most relevant studies were selected for a comprehensive review. Results: Different anticancer agents and nucleic acid-based therapies have been developed and assessed as novel targeted drug delivery techniques for brain tumors. New vehicles include polymeric and liposomal nanoparticles (NPs), wafers, microchips, microparticle-based nanosystems and cells-based vectors. Strong evidence from preclinical and translational studies indicate the great potentials of these NPs-based technologies in brain tumors and improving the therapeutic outcomes. Research is ongoing to develop effective new anticancer agents as well as strategies for BBB modulation and penetration. Conclusions: New targeted drug delivery systems based on stimuli-responsive NPs have shown promising outcomes in brain tumors. Advances in material design and nanochemistry lead to enhanced intracranial concentrations. Non-invasive technologies such as magnetic resonance imaging-guided ultrasound and high-intensity focused ultrasound have been utilized for BBB modulation with higher precision and improved drug delivery performance.


Author(s):  
Tomoki OUCHI ◽  
Shao LENAN ◽  
Shigeki KATO ◽  
Yuko SHIRAI ◽  
Takuma SATO ◽  
...  

Author(s):  
Mibin Kuruvilla Joseph ◽  
MdSaiful Islam ◽  
Joshua Reineke ◽  
Michael Hildreth ◽  
Tofuko Woyengo ◽  
...  

Author(s):  
A. A. Podutwar ◽  
S. A. Polshettiwar ◽  
A. R. Gawade ◽  
Akshay Baheti ◽  
Manish S. Wani ◽  
...  

Generally, it is said that the lymph node plays very important role in the cancer immunotherapy. So, delivering immunomodulating compounds to lymph node can be useful strategy for cancer immunotherapy. In case of this lymph node drug delivery system, lipid nanoparticles are widely used. High amount of drugs, nucleic acids and various other compounds can easily load in lipid nanoparticle, and they are easy to be manufacture on industrial scale also. In this review, we have focused on the potential of lipid nanoparticle technology to aim lymph nodes. However, there are many factors that control the delivery of drugs to lymphatics. Before the lymphatic detection, lipid nanoformulations are necessary to go through interstitial hindrance which alters delivery of them. So, the distribution and detection of lipid nanoformulations by means of lymphatic system depend on charge present on nanoparticles, hydrophobicity, particle size and molecular weight, form & type of lipid and emulsifier concentrations are as well significant factors disturbing the delivery of drugs in the lymphatic system.


2020 ◽  
Author(s):  
Heather Torrey ◽  
Ava Vila-Leahey ◽  
Yuchen Cen ◽  
Danielle MacKay ◽  
Alecia MacKay ◽  
...  

2020 ◽  
Vol 111 (11) ◽  
pp. 4232-4241
Author(s):  
Shigeki Kato ◽  
Kazu Takeda ◽  
Ariunbuyan Sukhbaatar ◽  
Maya Sakamoto ◽  
Shiro Mori ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document