Association of metabolic dysfunction-associated fatty liver disease with kidney disease

Author(s):  
Ting-Yao Wang ◽  
Rui-Fang Wang ◽  
Zhi-Ying Bu ◽  
Giovanni Targher ◽  
Christopher D. Byrne ◽  
...  
2020 ◽  
Vol 18 ◽  
Author(s):  
Zlatko Fras ◽  
Dimitri P. Mikhailidis

: IMPROVE-IT (IMProved Reduction of Outcomes: Vytorin Efficacy International Trial) was a randomized clini- cal trial (18,144 patients) that evaluated the efficacy of the combination of ezetimibe with simvastatin vs simvastatin mono- therapy in patients with acute coronary syndrome (ACS) and moderately increased low-density lipoprotein cholesterol (LDL-C) levels (of up to 2.6-3.2 mmol/L; 100-120 mg/dL). After 7 years of follow-up, combination therapy resulted in an additional LDL-C decrease [1.8 mmol/L, or 70 mg/dL, within the simvastatin (40 mg/day) monotherapy arm and 1.4 mmol/L, or 53 mg/dL for simvastatin (40 mg/day) + ezetimibe (10 mg/day)] and showed an incremental clinical benefit (composite of cardiovascular death, nonfatal myocardial infarction, unstable angina requiring rehospitalization, coronary re- vascularization (≥30 days after randomization), or nonfatal stroke; hazard ratio (HR) of 0.936, and 95% CI 0.887-0.996, p=0.016). Therefore, for very high cardiovascular risk patients “even lower is even better” regarding LDL-C, independently of the LDL-C reducing strategy. These findings confirm ezetimibe as an option to treat very-high-risk patients who cannot achieve LDL-C targets with statin monotherapy. Additional analyses of the IMPROVE-IT (both prespecified and post-hoc) include specific very-high-risk subgroups of patients (those with previous acute events and/or coronary revascularization, older than 75 years, as well as patients with diabetes mellitus, chronic kidney disease or non-alcoholic fatty liver disease). The data from IMPROVE-IT also provide reassurance regarding longer-term safety and efficacy of the intensification of li- pid-lowering therapy in very-high-risk patients resulting in very low LDL-C levels. We comment on the results of several (sub) analyses of IMPROVE-IT.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Jianan Zhao ◽  
Yu Zhao ◽  
Yiyang Hu ◽  
Jinghua Peng

AbstractIn the past decade, G protein-coupled receptors have emerged as drug targets, and their physiological and pathological effects have been extensively studied. Among these receptors, GPR119 is expressed in multiple organs, including the liver. It can be activated by a variety of endogenous and exogenous ligands. After GPR119 is activated, the cell secretes a variety of incretins, including glucagon-like peptide-1 and glucagon-like peptide-2, which may attenuate the metabolic dysfunction associated with fatty liver disease, including improving glucose and lipid metabolism, inhibiting inflammation, reducing appetite, and regulating the intestinal microbial system. GPR119 has been a potential therapeutic target for diabetes mellitus type 2 for many years, but its role in metabolic dysfunction associated fatty liver disease deserves further attention. In this review, we discuss relevant research and current progress in the physiology and pharmacology of the GPR119/incretin axis and speculate on the potential therapeutic role of this axis in metabolic dysfunction associated with fatty liver disease, which provides guidance for transforming experimental research into clinical applications.


2021 ◽  
Vol 22 (8) ◽  
pp. 4241
Author(s):  
Revathy Carnagarin ◽  
Kearney Tan ◽  
Leon Adams ◽  
Vance B. Matthews ◽  
Marcio G. Kiuchi ◽  
...  

Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common liver disease affecting a quarter of the global population and is often associated with adverse health outcomes. The increasing prevalence of MAFLD occurs in parallel to that of metabolic syndrome (MetS), which in fact plays a major role in driving the perturbations of cardiometabolic homeostasis. However, the mechanisms underpinning the pathogenesis of MAFLD are incompletely understood. Compelling evidence from animal and human studies suggest that heightened activation of the sympathetic nervous system is a key contributor to the development of MAFLD. Indeed, common treatment strategies for metabolic diseases such as diet and exercise to induce weight loss have been shown to exert their beneficial effects at least in part through the associated sympathetic inhibition. Furthermore, pharmacological and device-based approaches to reduce sympathetic activation have been demonstrated to improve the metabolic alterations frequently present in patients with obesity, MetSand diabetes. Currently available evidence, while still limited, suggests that sympathetic activation is of specific relevance in the pathogenesis of MAFLD and consequentially may offer an attractive therapeutic target to attenuate the adverse outcomes associated with MAFLD.


2021 ◽  
Vol 22 (8) ◽  
pp. 4156
Author(s):  
Yoshitaka Sakurai ◽  
Naoto Kubota ◽  
Toshimasa Yamauchi ◽  
Takashi Kadowaki

Many studies have reported that metabolic dysfunction is closely involved in the complex mechanism underlying the development of non-alcoholic fatty liver disease (NAFLD), which has prompted a movement to consider renaming NAFLD as metabolic dysfunction-associated fatty liver disease (MAFLD). Metabolic dysfunction in this context encompasses obesity, type 2 diabetes mellitus, hypertension, dyslipidemia, and metabolic syndrome, with insulin resistance as the common underlying pathophysiology. Imbalance between energy intake and expenditure results in insulin resistance in various tissues and alteration of the gut microbiota, resulting in fat accumulation in the liver. The role of genetics has also been revealed in hepatic fat accumulation and fibrosis. In the process of fat accumulation in the liver, intracellular damage as well as hepatic insulin resistance further potentiates inflammation, fibrosis, and carcinogenesis. Increased lipogenic substrate supply from other tissues, hepatic zonation of Irs1, and other factors, including ER stress, play crucial roles in increased hepatic de novo lipogenesis in MAFLD with hepatic insulin resistance. Herein, we provide an overview of the factors contributing to and the role of systemic and local insulin resistance in the development and progression of MAFLD.


2021 ◽  
Vol 22 (3) ◽  
pp. 1458
Author(s):  
Kai Qiu ◽  
Qin Zhao ◽  
Jing Wang ◽  
Guang-Hai Qi ◽  
Shu-Geng Wu ◽  
...  

Metabolic dysfunction-associated fatty liver disease (MAFLD) and its interaction with many metabolic pathways raises global public health concerns. This study aimed to determine the therapeutic effects of Pyrroloquinoline quinone (PQQ, provided by PQQ.Na2) on MAFLD in a chick model and primary chicken hepatocytes with a focus on lipid metabolism, anti-oxidative capacity, and mitochondrial biogenesis. The MAFLD chick model was established on laying hens by feeding them a high-energy low-protein (HELP) diet. Primary hepatocytes isolated from the liver of laying hens were induced for steatosis by free fatty acids (FFA) and for oxidative stress by hydrogen peroxide (H2O2). In the MAFLD chick model, the dietary supplementation of PQQ conspicuously ameliorated the negative effects of the HELP diet on liver biological functions, suppressed the progression of MAFLD mainly through enhanced lipid metabolism and protection of liver from oxidative injury. In the steatosis and oxidative stress cell models, PQQ functions in the improvement of the lipid metabolism and hepatocytes tolerance to fatty degradation and oxidative damage by enhancing mitochondrial biogenesis and then increasing the anti-oxidative activity and anti-apoptosis capacity. At both the cellular and individual levels, PQQ was demonstrated to exert protective effects of hepatocyte and liver from fat accumulation through the improvement of mitochondrial biogenesis and maintenance of redox homeostasis. The key findings of the present study provide an in-depth knowledge on the ameliorative effects of PQQ on the progression of fatty liver and its mechanism of action, thus providing a theoretical basis for the application of PQQ, as an effective nutrient, into the prevention of MAFLD.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 473
Author(s):  
Helena Castañé ◽  
Gerard Baiges-Gaya ◽  
Anna Hernández-Aguilera ◽  
Elisabet Rodríguez-Tomàs ◽  
Salvador Fernández-Arroyo ◽  
...  

Hepatic biopsy is the gold standard for staging nonalcoholic fatty liver disease (NAFLD). Unfortunately, accessing the liver is invasive, requires a multidisciplinary team and is too expensive to be conducted on large segments of the population. NAFLD starts quietly and can progress until liver damage is irreversible. Given this complex situation, the search for noninvasive alternatives is clinically important. A hallmark of NAFLD progression is the dysregulation in lipid metabolism. In this context, recent advances in the area of machine learning have increased the interest in evaluating whether multi-omics data analysis performed on peripheral blood can enhance human interpretation. In the present review, we show how the use of machine learning can identify sets of lipids as predictive biomarkers of NAFLD progression. This approach could potentially help clinicians to improve the diagnosis accuracy and predict the future risk of the disease. While NAFLD has no effective treatment yet, the key to slowing the progression of the disease may lie in predictive robust biomarkers. Hence, to detect this disease as soon as possible, the use of computational science can help us to make a more accurate and reliable diagnosis. We aimed to provide a general overview for all readers interested in implementing these methods.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Jianan Zhao ◽  
Yiyang Hu ◽  
Jinghua Peng

AbstractMost currently recommended therapies for metabolic dysfunction-associated fatty liver disease (MAFLD) involve diet control and exercise therapy. We searched PubMed and compiled the most recent research into possible forms of programmed cell death in MAFLD, including apoptosis, necroptosis, autophagy, pyroptosis and ferroptosis. Here, we summarize the state of knowledge on the signaling mechanisms for each type and, based on their characteristics, discuss how they might be relevant in MAFLD-related pathological mechanisms. Although significant challenges exist in the translation of fundamental science into clinical therapy, this review should provide a theoretical basis for innovative MAFLD clinical treatment plans that target programmed cell death.


Sign in / Sign up

Export Citation Format

Share Document