Mutational synergy during leukemia induction remodels chromatin accessibility, histone modifications and three-dimensional DNA topology to alter gene expression

2021 ◽  
Author(s):  
Haiyang Yun ◽  
Nisha Narayan ◽  
Shabana Vohra ◽  
George Giotopoulos ◽  
Annalisa Mupo ◽  
...  
2019 ◽  
Author(s):  
Karolina Stępniak ◽  
Magdalena A. Machnicka ◽  
Jakub Mieczkowski ◽  
Anna Macioszek ◽  
Bartosz Wojtaś ◽  
...  

SummaryChromatin structure and accessibility, and combinatorial binding of transcription factors to regulatory elements in genomic DNA control transcription. Genetic variations in genes encoding histones, epigenetics-related enzymes or modifiers affect chromatin structure/dynamics and result in alterations in gene expression contributing to cancer development or progression. Gliomas are brain tumors frequently associated with epigenetics-related gene deregulation. We performed whole-genome mapping of chromatin accessibility, histone modifications, DNA methylation patterns and transcriptome analysis simultaneously in multiple tumor samples to unravel novel epigenetic dysfunctions driving gliomagenesis. Based on the results of the integrative analysis of the acquired profiles, we created an atlas of active enhancers and promoters in benign and malignant gliomas. We explored these elements and intersected with Hi-C data to uncover molecular mechanisms instructing gene expression in gliomas.SignificanceEpigenetics-driven deregulation of gene expression accompanies cancer development, but its comprehensive characterization in cancer patients is fragmentary. We performed whole-genome profiling of gene expression, open chromatin, histone modifications and DNA-methylation profiles in the same samples from benign and malignant gliomas. Our study provides a first comprehensive atlas of active regulatory elements in gliomas, which allowed identification of the functional enhancers and promoters in patient samples. This comprehensive approach revealed epigenetic patterns influencing gene expression in benign gliomas and a new pathogenic mechanism involving FOXM1-driven network in glioblastomas. This atlas provides a common set of elements for cross-comparisons of existing and new datasets, prompting novel discoveries and better understanding of gliomagenesis.HighlightsWe provide an atlas of cis-regulatory elements active in human gliomasEnhancer-promoter contacts operating in gliomas are revealedDiverse enhancer activation is pronounced in malignant gliomasChromatin loop activates FOXM1-ANXA2R pathological network in glioblastomas.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2716-2716
Author(s):  
Robert G. Harris ◽  
Diane Krause

Abstract Covalent modifications on histones are epigenetic changes that play critical roles in control of gene expression. Most studies correlating specific histone modifications with transcriptional activity have been performed in yeast, and little is known about their dynamics during hematopoietic differentiation. We examined the dynamics of histone modifications and chromatin accessibility during all-trans retinoic acid (ATRA) induced differentiation of promyelocytes down the neutrophil lineage. As a model system, we used the human promyelocytic NB4 cell line, which undergoes neutrophil differentiation in response to ATRA. Using chromatin immunoprecipitation (ChIP) and quantitative PCR, we measured changes in dimethyl K4 (2MeH3K4), trimethyl K4 (3MeH3K4) and acetyl lysine 9 (Ac9H3K9) of histone H3 in the promoters of 3 genes that undergo transcriptional activation (Defensin-a, C/EBP-b and RAR-b), 1 gene that undergoes transcriptional downregulation (Myeloperoxidase), one gene that is constitutively active (GAPDH) and 1 gene that is silent (Albumin) during ATRA-induced differentiation. We correlated the changes in histone modifications with the gene expression pattern of these genes. AcH3K9 levels correlated with active gene transcription. At time 0, levels of AcH3K9 were enriched 50-fold and 100-fold over input in the MPO and GAPDH promoters, respectively, but only 5-fold on the C/EBP-b, Def-a and RAR-b promoters. Consistent with this finding, levels of AcH3K9 increased to 40-fold over input within 24h of differentiation in the Def-a and C/EBP-b promoters. On the silent albumin promoter, AcH3K9 levels never increased over input after ATRA. For the methylation patterns on H3K4, however, the findings were quite revealing. As expected, on the active MPO promoter, 2MeH3K4 was enriched 60-fold. However, 2MeH3K4was also present at high levels (15-30-fold) on the promoters of unexpressed Def-a, C/EBP-b and RAR-b suggesting that silent genes that are “primed” for activation are enriched for 2MeH3K4, consistent with previous data in yeast. After differentiation with ATRA, 2MeH3K4 went up only 3-fold for Def-a and C/EBP-b. The most surprising changes were found in 3MeH3K4 levels and in chromatin modification at the RAR-b promoter. Consistent with previous data showing that 3MeH3K4 is associated with gene activation, time 0 levels of 3MeH3K4 were enriched 80-fold and 150-fold over input in the MPO and GAPDH promoters, respectively, and were at background levels in the C/EBP-b, Def-a, and RAR-b promoters. After differentiation, however, although there was a significant increase in 3MeH3K4 levels within 12 hours in the Def-a promoter, 3MeH3K4 never was present on the C/EBP-b promoter, despite a huge increase in gene transcription, as well as significant and rapid increases in AcH3K9 and 2MeH3K4. Perhaps the most significant findings, however, were at the promoter of the RAR-b gene. RAR-b is unique amongst the genes studies in that it is directly bound by the PML-RAR-a fusion protein. This promoter was not detectable by PCR in ChIP assays after ATRA addition. To test the hypothesis that histones were lost on the RAR-b promoter during ATRA-induced differentiation, we used MNase digestion of chromatin. Nucleosome loss was confirmed by a decrease in precipitated RAR-b promoter DNA within 24 hours of ATRA addition. In contrast, exon1 of RAR-b was modified in a manner similar to Def-a and C/EBP-b. These findings indicate that despite the seemingly coordinately regulated increase in transcription of multiple genes upon myeloid differentiation, the chromatin modifications on the promoters of these genes are regulated quite differently.


2021 ◽  
Author(s):  
Dominic D.G. Owens ◽  
Giorgio Anselmi ◽  
A. Marieke Oudelaar ◽  
Damien J Downes ◽  
Alessandro Cavallo ◽  
...  

The transcription factor RUNX1 is a critical regulator of developmental hematopoiesis and is frequently disrupted in leukemia. Runx1 is a large, complex gene that is expressed from two alternative promoters under the spatiotemporal control of multiple hematopoietic enhancers. To dissect the dynamic regulation of Runx1 in hematopoietic development, we analyzed its three-dimensional chromatin conformation in mouse embryonic stem cell (ESC) differentiation cultures. Runx1 resides in a 1.1 Mb topologically associating domain (TAD) demarcated by convergent CTCF motifs. As ESCs differentiate to mesoderm, chromatin accessibility, Runx1 enhancer-promoter (E-P) interactions, and CTCF-CTCF interactions increased in the TAD, along with initiation of Runx1 expression from the P2 promoter. Differentiation to hematopoietic progenitor cells was associated with the formation of tissue-specific sub-TADs over Runx1, a shift in E-P interactions, P1 promoter demethylation, and robust expression from both Runx1 promoters. Deletions of promoter-proximal CTCF sites at the sub-TAD boundaries had no obvious effects on E-P interactions but led to partial loss of domain structure, mildly affected gene expression, and delayed hematopoietic development. Together, our analyses of gene regulation at a large multi-promoter developmental gene revealed that dynamic sub-TAD chromatin boundaries play a role in establishing TAD structure and coordinated gene expression.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Huixia Geng ◽  
Hongyang Chen ◽  
Haiying Wang ◽  
Lai Wang

Nucleosomes composed of histone octamer and DNA are the basic structural unit in the eukaryote chromosome. Under the stimulation of various factors, histones will undergo posttranslational modifications such as methylation, phosphorylation, acetylation, and ubiquitination, which change the three-dimensional structure of chromosomes and affect gene expression. Therefore, the combination of different states of histone modifications modulates gene expression is called histone code. The formation of learning and memory is one of the most important mechanisms for animals to adapt to environmental changes. A large number of studies have shown that histone codes are involved in the formation and consolidation of learning and memory. Here, we review the most recent literature of histone modification in regulating neurogenesis, dendritic spine dynamic, synapse formation, and synaptic plasticity.


2020 ◽  
Vol 117 (35) ◽  
pp. 21450-21458 ◽  
Author(s):  
Wenqing Cai ◽  
Jialiang Huang ◽  
Qian Zhu ◽  
Bin E. Li ◽  
Davide Seruggia ◽  
...  

How overall principles of cell-type–specific gene regulation (the “logic”) may change during ontogeny is largely unexplored. We compared transcriptomic, epigenomic, and three-dimensional (3D) genomic profiles in embryonic (EryP) and adult (EryD) erythroblasts. Despite reduced chromatin accessibility compared to EryP, distal chromatin of EryD is enriched in H3K27ac, Gata1, and Myb occupancy. EryP-/EryD-shared enhancers are highly correlated with red blood cell identity genes, whereas cell-type–specific regulation employs differentciselements in EryP and EryD cells. In contrast to EryP-specific genes, which exhibit promoter-centric regulation through Gata1, EryD-specific genes rely more on distal enhancers for regulation involving Myb-mediated enhancer activation. Gata1 HiChIP demonstrated an overall increased enhancer–promoter interactions at EryD-specific genes, whereas genome editing in selected loci confirmed distal enhancers are required for gene expression in EryD but not in EryP. Applying a metric for enhancer dependence of transcription, we observed a progressive reliance on cell-specific enhancers with increasing ontogenetic age among diverse tissues of mouse and human origin. Our findings highlight fundamental and conserved differences at distinct developmental stages, characterized by simpler promoter-centric regulation of cell-type–specific genes in embryonic cells and increased combinatorial enhancer-driven control in adult cells.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 278-278 ◽  
Author(s):  
Haiyang Yun ◽  
Shabana Vohra ◽  
Annalisa Mupo ◽  
George Giotopoulos ◽  
Daniel Sasca ◽  
...  

Aberrant transcriptional programs are cardinal features of Acute Myeloid Leukemia (AML). Recently, it has been shown that specific distal cis-regulatory elements called enhancers communicate with promoters through 3-D DNA looping to regulate tissue-specific gene expression. Recurrent mutations in epigenetic regulators that modify enhancers, transcription factors that bind enhancers and the structural proteins that promote DNA looping, such as the Cohesin complex and its major binding partner CTCF have been demonstrated in AML. However, how these mutations regulate chromatin and alter 3D-DNA topology and communication between enhancers and promoters to generate leukemia-specific transcriptional programs remains poorly understood. In addition, many AML cases lack mutations in epigenetic regulators, transcription factors or DNA structural proteins, yet still demonstrate aberrant transcription, suggesting indirect effects of other mutations on enhancer function and the epigenetic landscape. To address these questions, we have utilized an allelic series of mice carrying the most common mutations in AML, namely Flt3-ITD and Npm1c (co-mutated in ~15% of all AMLs). These model different "transition states" (normal: wild type (WT), Pre-Malignant: single mutant (SM) with either Flt3-ITD or Npm1c mutations and Malignant: double mutant (DM)) during AML induction. Moreover, our design allows analysis of the SM mice to deconvolute the contribution of individual mutations to altered chromatin regulation. We have analyzed hematopoietic stem and progenitor cells (HSPCs) from WT and mutant mice for gene expression (RNA-seq), chromatin activation states (ChIP-seq for H3K4me1, H3K4me3, H3K27ac and H3K27me3), chromatin accessibility (ATAC-seq), and promoter-anchored 3-D chromatin interaction (promoter capture HiC, pCHiC)(Figure 1) and have integrated these analyses to determine the transcriptional, epigenetic and DNA-topological evolution of AML. Through pairwise comparisons between mutant and WT HSPCs, our data demonstrated that SM cells, with either Flt3-ITDor Npm1c mutations, alter gene expression only very modestly. However, when both mutations are present in DM cells, much larger gene programs that drive leukemia are both up- and downregulated. To examine the epigenetic regulation of these programs, we next built an enhancer compendium across all 4 allelic states using the H3K4me1 mark. Layering on H3K27ac activation, our data demonstrated that, in contrast to gene expression, significant alterations in enhancer specification and activation occur in advance of gene expression changes, to "prime" critical genes in Flt3-ITD, but not in Npm1c HSPCs. By contrast, Flt3-ITD and Npm1c mutations both altered global chromatin accessibility, with losses and gains evident at multiple critical genes. Similarly, our pCHiC data demonstrated significant alterations in DNA topology in mutant HSPCs that culminate in alterations in DNA "compartments" in DM HSPC. Moreover, they identified "hardwired" and "rewired" interactions between promoters and enhancers important for expression of critical leukemia programs. Analyses of all of these separate layers demonstrated a uniform pattern; progressive alterations in the transition from SM to DM HSPCs. Integrating these layers of analysis clearly demonstrated synergy between the mutations and a correlation between gene expression changes and chromatin dynamics in mutant cells. Furthermore, performing de novo motif analysis suggested a signal-specific transcription factor (TF) network downstream of Flt3-ITD that was amplified in the DM HSPC and that was corroborated by GSEA analysis. Our data had identified long-range regulatory control regions at the Spi1/PU.1 and Hoxa cluster loci amongst many others, and motif analysis had suggested Hox and Pu.1 to be important TFs in our malignant networks. Using these as examplars, we then perturbed the genes and regulatory elements at these loci by shRNA knockdown and CRISPR-mediated excision and could abrogate leukemic growth, validating the importance of our proposed networks. Taken together, these integrated analyses demonstrate a highly dynamic and coordinated process, where the effects of individual mutations synergize to remodel the chromatin landscape and 3D-DNA topology to generate networks that initiate and maintain AML transcriptional programs. Figure Disclosures Vassiliou: Kymab Ltd: Consultancy, Other: Minor Stockholder; Oxstem Ltd: Consultancy; Celgene: Research Funding.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhe Liang ◽  
Qian Zhang ◽  
Changmian Ji ◽  
Guihua Hu ◽  
Pingxian Zhang ◽  
...  

Abstract Background The three-dimensional spatial organization of the genome plays important roles in chromatin accessibility and gene expression in multiple biological processes and has been reported to be altered in response to environmental stress. However, the functional changes in spatial genome organization during environmental changes in crop plants are poorly understood. Results Here we perform Hi-C, ATAC-seq, and RNA-seq in two agronomically important rice cultivars, Nipponbare (Nip; Japonica) and 93-11 (Indica), to report a comprehensive profile of nuclear dynamics during heat stress (HS). We show that heat stress affects different levels of chromosome organization, including A/B compartment transition, increase in the size of topologically associated domains, and loss of short-range interactions. The chromatin architectural changes were associated with chromatin accessibility and gene expression changes. Comparative analysis revealed that 93-11 exhibited more dynamic gene expression and chromatin accessibility changes, including HS-related genes, consistent with observed higher HS tolerance in this cultivar. Conclusions Our data uncovered higher-order chromatin architecture as a new layer in understanding transcriptional regulation in response to heat stress in rice.


2007 ◽  
Vol 177 (4S) ◽  
pp. 93-93
Author(s):  
Toshiyuki Tsunoda ◽  
Junichi Inocuchi ◽  
Darren Tyson ◽  
Seiji Naito ◽  
David K. Ornstein

Sign in / Sign up

Export Citation Format

Share Document