Macrophage IRX3 promotes diet-induced obesity and metabolic inflammation

2021 ◽  
Vol 22 (10) ◽  
pp. 1268-1279 ◽  
Author(s):  
Jingfei Yao ◽  
Dongmei Wu ◽  
Chunyan Zhang ◽  
Ting Yan ◽  
Yiheng Zhao ◽  
...  
2019 ◽  
Vol 115 (13) ◽  
pp. 1861-1872 ◽  
Author(s):  
Fabrizia Bonacina ◽  
Annalisa Moregola ◽  
Rémi Porte ◽  
Andrea Baragetti ◽  
Eduardo Bonavita ◽  
...  

Abstract Aims Low-grade chronic inflammation characterizes obesity and metabolic syndrome. Here, we aim at investigating the impact of the acute-phase protein long pentraxin 3 (PTX3) on the immune-inflammatory response occurring during diet-induced obesity. Methods and results PTX3 deficiency in mice fed a high-fat diet for 20 weeks protects from weight gain and adipose tissue deposition in visceral and subcutaneous depots. This effect is not related to changes in glucose homeostasis and lipid metabolism but is associated with an improved immune cell phenotype in the adipose tissue of Ptx3 deficient animals, which is characterized by M2-macrophages polarization and increased angiogenesis. These findings are recapitulated in humans where carriers of a PTX3 haplotype (PTX3 h2/h2 haplotype), resulting in lower PTX3 plasma levels, presented with a reduced prevalence of obesity and decreased abdominal adiposity compared with non-carriers. Conclusion Our results support a critical role for PTX3 in the onset of obesity by promoting inflammation and limiting adipose tissue vascularization and delineate PTX3 targeting as a valuable strategy for the treatment of adipose tissue-associated inflammatory response.


2020 ◽  
Vol 6 (19) ◽  
pp. eaaz7492 ◽  
Author(s):  
Ruhang Tang ◽  
Natalia S. Harasymowicz ◽  
Chia-Lung Wu ◽  
Kelsey H. Collins ◽  
Yun-Rak Choi ◽  
...  

Obesity-associated inflammation and loss of muscle function play critical roles in the development of osteoarthritis (OA); thus, therapies that target muscle tissue may provide novel approaches to restoring metabolic and biomechanical dysfunction associated with obesity. Follistatin (FST), a protein that binds myostatin and activin, may have the potential to enhance muscle formation while inhibiting inflammation. Here, we hypothesized that adeno-associated virus 9 (AAV9) delivery of FST enhances muscle formation and mitigates metabolic inflammation and knee OA caused by a high-fat diet in mice. AAV-mediated FST delivery exhibited decreased obesity-induced inflammatory adipokines and cytokines systemically and in the joint synovial fluid. Regardless of diet, mice receiving FST gene therapy were protected from post-traumatic OA and bone remodeling induced by joint injury. Together, these findings suggest that FST gene therapy may provide a multifactorial therapeutic approach for injury-induced OA and metabolic inflammation in obesity.


Author(s):  
LC Bollheimer ◽  
H Wobser ◽  
CE Wrede ◽  
A Schäffler ◽  
J Schölmerich ◽  
...  

Author(s):  
Laura Gathercole ◽  
Matthew Chapman ◽  
Dean Larner ◽  
Petra Klusonova ◽  
Trevor Penning ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 276-LB ◽  
Author(s):  
RENATA PEREIRA ◽  
ANGELA C. OLVERA ◽  
ALEX A. MARTI ◽  
RANA HEWEZI ◽  
WILLIAM A. BUI TRAN ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1730-P
Author(s):  
RASHEED AHMAD ◽  
NADEEM AKHTER ◽  
SHIHAB P. KOCHUMON ◽  
AREEJ ABU ALROUB ◽  
REEBY S. THOMAS ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document