scholarly journals Resveratrol reverses the Warburg effect by targeting the pyruvate dehydrogenase complex in colon cancer cells

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Elise Saunier ◽  
Samantha Antonio ◽  
Anne Regazzetti ◽  
Nicolas Auzeil ◽  
Olivier Laprévote ◽  
...  
2010 ◽  
Vol 128 (11) ◽  
pp. 2591-2601 ◽  
Author(s):  
Jean-Marc Blouin ◽  
Graziella Penot ◽  
Martine Collinet ◽  
Magali Nacfer ◽  
Claude Forest ◽  
...  

2015 ◽  
Vol 1852 (9) ◽  
pp. 1971-1980 ◽  
Author(s):  
Kohei Taniguchi ◽  
Nobuhiko Sugito ◽  
Minami Kumazaki ◽  
Haruka Shinohara ◽  
Nami Yamada ◽  
...  

2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Liang Zhang ◽  
Jianong Zhang ◽  
Yan Liu ◽  
Pingzhao Zhang ◽  
Ji Nie ◽  
...  

AbstractSignal transducer and activator 5a (STAT5A) is a classical transcription factor that plays pivotal roles in various biological processes, including tumor initiation and progression. A fraction of STAT5A is localized in the mitochondria, but the biological functions of mitochondrial STAT5A remain obscure. Here, we show that STAT5A interacts with pyruvate dehydrogenase complex (PDC), a mitochondrial gatekeeper enzyme connecting two key metabolic pathways, glycolysis and the tricarboxylic acid cycle. Mitochondrial STAT5A disrupts PDC integrity, thereby inhibiting PDC activity and remodeling cellular glycolysis and oxidative phosphorylation. Mitochondrial translocation of STAT5A is increased under hypoxic conditions. This strengthens the Warburg effect in cancer cells and promotes in vitro cell growth under hypoxia and in vivo tumor growth. Our findings indicate distinct pro-oncogenic roles of STAT5A in energy metabolism, which is different from its classical function as a transcription factor.


2016 ◽  
Vol 291 (33) ◽  
pp. 17405-17416 ◽  
Author(s):  
Yang Zhang ◽  
Yi Zhang ◽  
Liying Geng ◽  
Haowei Yi ◽  
Wei Huo ◽  
...  

Drug resistance is one of the main causes of colon cancer recurrence. However, our understanding of the underlying mechanisms and availability of therapeutic options remains limited. Here we show that expression of pyruvate dehydrogenase kinase 4 (PDK4) is positively correlated with drug resistance of colon cancer cells and induced by 5-fluorouracil (5-FU) treatment in drug-resistant but not drug-sensitive cells. Knockdown of PDK4 expression sensitizes colon cancer cells to 5-FU or oxaliplatin-induced apoptosis in vitro and increases the effectiveness of 5-FU in the inhibition of tumor growth in a mouse xenograft model in vivo. In addition, we demonstrate for the first time that TGFβ mediates drug resistance by regulating PDK4 expression and that 5-FU induces PDK4 expression in a TGFβ signaling-dependent manner. Mechanistically, knockdown or inhibition of PDK4 significantly increases the inhibitory effect of 5-FU on expression of the anti-apoptotic factors Bcl-2 and survivin. Importantly, studies of patient samples indicate that expression of PDK4 and phosphorylation of Smad2, an indicator of TGFβ pathway activation, show a strong correlation and that both positively associate with chemoresistance in colorectal cancer. These findings indicate that the TGFβ/PDK4 signaling axis plays an important role in the response of colorectal cancer to chemotherapy. A major implication of our studies is that inhibition of PDK4 may have considerable therapeutic potential to overcome drug resistance in colorectal cancer patients, which warrants the development of PDK4-specific inhibitors.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3575 ◽  
Author(s):  
Lee ◽  
Woo ◽  
Yoo ◽  
Cho ◽  
Kim

Our aim was to verify the potential ability of succinylacetone (SA) to inhibit mitochondrial function, thereby suppressing cancer cell proliferation. SA treatment caused apoptosis in HCT116 and HT29 cells, but not in SW480 cells, with mitochondria playing a key role. We checked for dysfunctional mitochondria after SA treatment. Mitochondria of HT29 cells were swollen, indicating damage, whereas in HCT116 cells, several mitochondria had a diminished size. Damaged mitochondria decreased ATP production and induced reactive oxygen species (ROS) in the cells. To understand SA-induced reduction in ATP production, we investigated the electron transfer chains (ETC) and pyruvate dehydrogenase kinase (PDK) activity, which prevents the transfer of acetyl-CoA to the TCA (tricarboxylic acid) cycle by inhibiting PDH (pyruvate dehydrogenase) activity. In each cell line, the inhibitory mechanism of ATP by SA was different. The activity of complex III consisting of the mitochondrial ETCs in HT29 cells was decreased. In contrast, PDH activity in HCT116 cells was reduced. Nicotinamide nucleotide transhydrogenase (NNT)-removing reactive oxygen species (ROS) was upregulated in HT29 cells, but not in HCT116 cells, indicating that in HT29 cells, a defense mechanism was activated against ROS. Collectively, our study showed a differential mechanism occurs in response to SA in colon cancer cells.


2016 ◽  
Vol 62 (3) ◽  
pp. 660-668 ◽  
Author(s):  
Weimin Zhu ◽  
Yijiao Huang ◽  
Qi Pan ◽  
Pei Xiang ◽  
Nanlan Xie ◽  
...  

2018 ◽  
Vol 19 (9) ◽  
pp. 2752 ◽  
Author(s):  
Ibrahim El Halabi ◽  
Rachelle Bejjany ◽  
Rihab Nasr ◽  
Deborah Mukherji ◽  
Sally Temraz ◽  
...  

Given the safety and potential benefits of intravenous ascorbic acid (AA) administration in cancer patients, there is merit in further exploring this therapeutic concept. In this review, we discuss the potential benefits of intravenous AA administration on colorectal cancer and we specifically focus on its effect on glycolysis in mutant and wild type RAS. We perform a PubMed and Ovid MEDLINE search using ascorbic acid, intravenous vitamin C, KRAS mutation, BRAF mutation and colorectal cancer (CRC) as keywords. At the cellular level, colorectal cancer cells undergo a metabolic shift called the Warburg effect to allow for more glucose absorption and utilization of glycolysis. This shift also allows AA to enter which leads to a disruption in the Warburg effect and a shutdown of the downstream KRAS pathway in mutated KRAS colon cancer cells. At the clinical level, AA is associated with tumour regression in advanced disease and improved tolerability and side effects of standard therapy. Based on these findings, we conclude that further clinical trials are needed on a larger scale to examine the therapeutic benefits of AA in colon cancer.


Sign in / Sign up

Export Citation Format

Share Document