scholarly journals Controlling Dzyaloshinskii-Moriya Interaction via Chirality Dependent Atomic-Layer Stacking, Insulator Capping and Electric Field

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Hongxin Yang ◽  
Olivier Boulle ◽  
Vincent Cros ◽  
Albert Fert ◽  
Mairbek Chshiev
2021 ◽  
Vol 33 (33) ◽  
pp. 2170255
Author(s):  
Jingdi Lu ◽  
Liang Si ◽  
Qinghua Zhang ◽  
Chengfeng Tian ◽  
Xin Liu ◽  
...  

2020 ◽  
Vol 4 (5) ◽  
Author(s):  
José D. Gouveia ◽  
Francesc Viñes ◽  
Francesc Illas ◽  
José R. B. Gomes

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 338
Author(s):  
Hak Hyeon Lee ◽  
Dong Su Kim ◽  
Ji Hoon Choi ◽  
Young Been Kim ◽  
Sung Hyeon Jung ◽  
...  

An effective strategy for improving the charge transport efficiency of p-type Cu2O photocathodes is the use of counter n-type semiconductors with a proper band alignment, preferably using Al-doped ZnO (AZO). Atomic layer deposition (ALD)-prepared AZO films show an increase in the built-in potential at the Cu2O/AZO interface as well as an excellent conformal coating with a thin thickness on irregular Cu2O. Considering the thin thickness of the AZO overlayers, it is expected that the composition of the Al and the layer stacking sequence in the ALD process will significantly influence the charge transport behavior and the photoelectrochemical (PEC) performance. We designed various stacking orders of AZO overlayers where the stacking layers consisted of Al2O3 (or Al) and ZnO using the atomically controlled ALD process. Al doping in ZnO results in a wide bandgap and does not degrade the absorption efficiency of Cu2O. The best PEC performance was obtained for the sample with an AZO overlayer containing conductive Al layers in the bottom and top regions. The Cu2O/AZO/TiO2/Pt photoelectrode with this overlayer exhibits an open circuit potential of 0.63 V and maintains a high cathodic photocurrent value of approximately −3.2 mA cm−2 at 0 VRHE for over 100 min.


2018 ◽  
Vol 4 (12) ◽  
pp. eaav0265 ◽  
Author(s):  
Tomohiro Koyama ◽  
Yoshinobu Nakatani ◽  
Jun’ichi Ieda ◽  
Daichi Chiba

We show that the electric field (EF) can control the domain wall (DW) velocity in a Pt/Co/Pd asymmetric structure. With the application of a gate voltage, a substantial change in DW velocity up to 50 m/s is observed, which is much greater than that observed in previous studies. Moreover, modulation of a DW velocity exceeding 100 m/s is demonstrated in this study. An EF-induced change in the interfacial Dzyaloshinskii-Moriya interaction (DMI) up to several percent is found to be the origin of the velocity modulation. The DMI-mediated velocity change shown here is a fundamentally different mechanism from that caused by EF-induced anisotropy modulation. Our results will pave the way for the electrical manipulation of spin structures and dynamics via DMI control, which can enhance the performance of spintronic devices.


Sign in / Sign up

Export Citation Format

Share Document